Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 121, 2023 - Issue 9-10: Special Issue of Molecular Physics in Honor of Professor Peter M. W. Gill
1,678
Views
2
CrossRef citations to date
0
Altmetric
Peter Gill Special Issue

Effective hamiltonian of crystal field method for periodic systems containing transition metals

, , &
Article: e2106905 | Received 28 May 2022, Accepted 19 Jul 2022, Published online: 16 Aug 2022

References

  • C.K. Prier, D.A. Rankic and D.W.C. MacMillan, Chem. Rev. 113 (7), 5322–5363 (2013). doi:10.1021/cr300503r
  • R. Newman and R.M. Chrenko, Phys. Rev. 114 (6), 1507–1513 (1959). doi:10.1103/PhysRev.114.1507
  • J. Zaanen, G.A. Sawatzky and J.W. Allen, Phys. Rev. Lett. 55 (4), 418–421 (1985). doi:10.1103/PhysRevLett.55.418
  • A.M. Tokmachev and A.L. Tchougréeff, J. Solid. State. Chem. 176 (2), 633–645 (2003). doi:10.1016/S0022-4596(03)00411-0
  • C. Morrison, Crystal Fields for Transition-Metal Ions in Laser-Host Materials (Springer-Verlag, Berlin, 1992).
  • H.-C. Zhou, J.R. Long and O.M. Yaghi, Chem. Rev. 112 (2), 673–674 (2012). doi:10.1021/cr300014x
  • J. Zheng, K. Lebedev, S. Wu, C. Huang, T. Ayvalı, T.-S. Wu, Y. Li, P.-L. Ho, Y.-L. Soo, A. Kirkland and S.C.E. Tsang, J. Am. Chem. Soc. 143 (21), 7979–7990 (2021). doi:10.1021/jacs.1c01097
  • K. Liu, J. Fu, L. Zhu, X. Zhang, H. Li, H. Liu, J. Hu and M. Liu, Nanoscale 12 (8), 4903–4908 (2020). doi:10.1039/C9NR09117C
  • W. Harrison, Electronic Structures and the Properties of Solids: The Physics of the Chemical Bond (Freeman Co, San Francisco, 1980).
  • R. Gillen and J. Robertson, J. Phys: Condens. Matter 25 (16), 165502 (2013). doi:10.1088/0953-8984/25/16/165502
  • C.J. Cramer and D.G. Truhlar, Phys. Chem. Chem. Phys. 11 (46), 10757 (2009). doi:10.1039/b907148b
  • P.J. Hasnip, K. Refson, M.I.J. Probert, J.R. Yates, S.J. Clark and C.J. Pickard, Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 372 (2011), 20130270 (2014). doi:10.1098/rsta.2013.0270
  • A.Z. Jovanović, S.V. Mentus, N.V. Skorodumova and I.A. Pašti, Adv. Mater. Interfaces. 8 (8), 2001814 (2020). doi:10.1002/admi.v8.8
  • H. Valencia, A. Gil and G. Frapper, J. Phys. Chem. C 114 (33), 14141–14153 (2010). doi:10.1021/jp103445v
  • N.T.T. Tran, D.K. Nguyen, S.-Y. Lin, G. Gumbs and M.-F. Lin, ChemPhysChem 20 (19), 2473–2481 (2019). doi:10.1002/cphc.v20.19
  • A.L. Tchougréeff, Int. J. Quantum. Chem. 116 (3), 137–160 (2015). doi:10.1002/qua.25050
  • A.L. Tchougréeff, Hybrid Methods of Molecular Modeling (Springer Verlag, London, 2008).
  • A.V. Soudackov, A.L. Tchougréeff and I.A. Misurkin, in Electron-Electron Correlation Effects in Low-Dimensional Conductors and Superconductors, edited by A.A. Ovchinnikov and I.I. Ukrainskii (Springer Verlag, Berlin Heidelberg, 1991), pp. 106–111.
  • A.V. Soudackov, A.L. Tchougréeff and I.A. Misurkin, Theor. Chim. Acta. 83 (5–6), 389–416 (1992). doi:10.1007/BF01113064
  • I.M. A.V. Soudackov and A.L. Tchougréeff, Int. J. Quantum. Chem. 58 (2), 161–173 (1996). doi:10.1002/(ISSN)1097-461X
  • A.L. Tchougréeff and R. Dronskowski, J. Phys. Chem. A 117 (33), 7980–7988 (2013). doi:10.1021/jp404040c
  • A.L. Tchougréeff, A.V. Soudackov, J. van Leusen, P. Kögerler, K.-D. Becker and R. Dronskowski, Int. J. Quantum. Chem. 116 (4), 282–294 (2015). doi:10.1002/qua.25016
  • A.L. Tchougréeff, A.V. Soudackov, I.A. Misurkin, H. Bolvin and O. Kahn, Chem. Phys. 193 (1), 19–26 (1995). doi:10.1016/0301-0104(94)00410-C
  • M. Darkhovskii, A. Soudackov and A. Tchougréeff, Theor. Chem. Acc. 114 (1–3), 97–109 (2005). doi:10.1007/s00214-005-0649-9
  • M. Razumov and A.L. Tchougréeff, Russ. J. Phys. Chem. 74, 87–93 (2000).
  • A.L. Tchougréeff and R. Dronskowski, J. Phys. Chem. A 115 (17), 4547–4552 (2011). doi:10.1021/jp201070w
  • A.L. Tchougréeff, J. Mol. Catal. A: Chem. 119 (1–3), 377–386 (1997). doi:10.1016/S1381-1169(96)00501-8
  • A. Domingo, A. Rodríguez-Fortea, M. Swart, C. de Graaf and R. Broer, Phys. Rev. B. 85 (15), 155143 (2012). doi:10.1103/PhysRevB.85.155143
  • V.M. Shakhova, D.A. Maltsev, Y.V. Lomachuk, N.S. Mosyagin, L.V. Skripnikov and A.V. Titov, arXiv, 2019. doi:10.48550/arXiv.1911.04332
  • S.G. Semenov, M.V. Makarova, M.E. Bedrina and A.V. Titov, Russ. J. Gen. Chem. 91 (3), 389–392 (2021). doi:10.1134/S1070363221030087
  • I.V. Popov, T.S. Kushnir and A.L. Tchougréeff, J. Comput. Chem. 42 (32), 2352–2368 (2021). doi:10.1002/jcc.v42.32
  • I. Popov, T. Kushnir and A. Tchougréeff, GoGreenGo, software web-page <https://netlab.cartesius.info/doxygen/gogreengo/index.html>, last accessed: 11 April 2022. <https://netlab.cartesius.info/doxygen/gogreengo/index.html>.
  • P. Kuiper, G. Kruizinga, J. Ghijsen, G.A. Sawatzky and H. Verweij, Phys. Rev. Lett. 62 (2), 221–224 (1989). doi:10.1103/PhysRevLett.62.221
  • A. Svane and O. Gunnarsson, Phys. Rev. Lett. 65 (9), 1148–1151 (1990). doi:10.1103/PhysRevLett.65.1148
  • I. de P. R. Moreira, F. Illas and R.L. Martin, Phys. Rev. B. 65 (15), 155102 (2002). doi:10.1103/PhysRevB.65.155102
  • S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys and A.P. Sutton, Phys. Rev. B. 57 (3), 1505–1509 (1998). doi:10.1103/PhysRevB.57.1505
  • O. Bengone, M. Alouani, P. Blöchl and J. Hugel, Phys. Rev. B. 62 (24), 16392–16401 (2000). doi:10.1103/PhysRevB.62.16392
  • V.I. Anisimov, P. Kuiper and J. Nordgren, Phys. Rev. B. 50 (12), 8257–8265 (1994). doi:10.1103/PhysRevB.50.8257
  • F. Aryasetiawan and O. Gunnarsson, Phys. Rev. Lett. 74 (16), 3221–3224 (1995). doi:10.1103/PhysRevLett.74.3221
  • A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992). doi:10.1103/PhysRevB.45.6479
  • A. Georges, G. Kotliar, W. Krauth and M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996). doi:10.1103/RevModPhys.68.13
  • G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet and C.A. Marianetti, Rev. Mod. Phys. 78, 865 (2006). doi:10.1103/RevModPhys.78.865
  • E. Plekhanov, P. Hasnip, V. Sacksteder, M. Probert, S.J. Clark, K. Refson and C. Weber, Phys. Rev. B 98, 075129 (2018). doi:10.1103/PhysRevB.98.075129
  • E. Plekhanov, N. Bonini and C. Weber, Phys. Rev. B 104, 235131 (2021). doi:10.1103/PhysRevB.104.235131
  • S.Y. Savrasov and G. Kotliar, Phys. Rev. Lett. 90 (5), 056401 (2003). doi:10.1103/PhysRevLett.90.056401
  • S. Wouters, C.A. Jiménez-Hoyos, Q. Sun and G.K.-L. Chan, J. Chem. Theory. Comput. 12 (6), 2706–2719 (2016). doi:10.1021/acs.jctc.6b00316
  • F. Lechermann, A. Georges, G. Kotliar and O. Parcollet, Phys. Rev. B. 76 (15), 155102 (2007). doi:10.1103/PhysRevB.76.155102
  • T. Ayral, T.-H. Lee and G. Kotliar, Phys. Rev. B. 96 (23), 235139 (2017). doi:10.1103/PhysRevB.96.235139
  • H. Ma, N. Sheng, M. Govoni and G. Galli, J. Chem. Theory. Comput. 17, 2116 (2021). doi:10.1021/acs.jctc.0c01258
  • P.W. Anderson, Phys. Rev. 115 (1), 2–13 (1959). doi:10.1103/PhysRev.115.2
  • P. W.Anderson, Solid State Phys. 14, 99–214 (1963). doi:10.1016/S0081-1947(08)60260-X
  • A.L. Tchougréeff, Effective Hamiltonian Crystal Field for Magnetic Interactions in Polynuclear Transition Metal Complexes. Sequential Derivation and Exemplary Numerical Estimates, arXiv 2013. <https://arxiv.org/abs/1301.1036>.
  • R. McWeeny and B. Sutcliffe, Methods of Molecular Quantum Mechanics, 2nd ed. (Academic Press, London, 1992).
  • P. Löwdin, Perturbation Theory and Its Application in Quantum Mechanics (Wiley, New York, 1966).
  • I.B. Bersuker, Electronic Structure and Properties of Transition Metal Compounds: Introduction to the Theory (John Wiley and Sons, New Jersey, 2010).
  • B.A. Wells and A.L. Chaffee, J. Chem. Theory. Comput. 11 (8), 3684–3695 (2015). doi:10.1021/acs.jctc.5b00093
  • R.G. Parr, Int. J. Quantum. Chem. 37 (4), 327–347 (1990). doi:10.1002/(ISSN)1097-461X
  • G. Kresse and J. Furthmüller, Phys. Rev. B. 54 (16), 11169–11186 (1996). doi:10.1103/PhysRevB.54.11169
  • V.L. Deringer, A.L. Tchougreeff and R. Dronskowski, J. Phys. Chem. A 115 (21), 5461–5466 (2011). doi:10.1021/jp202489s
  • S. Maintz, V.L. Deringer, A.L. Tchougreeff and R. Dronskowski, J. Comput. Chem. 34 (29), 2557–2567 (2013). doi:10.1002/jcc.v34.29
  • S. Maintz, V.L. Deringer, A.L. Tchougréeff and R. Dronskowski, J. Comput. Chem. 37, 1030–1035 (2016). doi:10.1002/jcc.24300
  • A. Mostofi, J.R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt and D. Marzari, Comput. Phys. Commun.178, 685 (2008). doi:10.1016/j.cpc.2007.11.016
  • J. Pople and D. Beveridge, Approximate Molecular Orbital Theory (McGraw-Hill, New York, 1970).
  • M.J.S. Dewar, E.G. Zoebisch, E.F. Healy and J.J.P. Stewart, J. Am. Chem. Soc. 107 (13), 3902–3909 (1985). doi:10.1021/ja00299a024
  • X. Gonze, B. Amadon, G. Antonius, F. Arnardi, L. Baguet, J.-M. Beuken, J. Bieder, F. Bottin, J. Bouchet, E. Bousquet, N. Brouwer, F. Bruneval, G. Brunin, T. Cavignac, J.-B. Charraud, W. Chen, M. Côté, S. Cottenier, J. Denier, G. Geneste, P. Ghosez, M. Giantomassi, Y. Gillet, O. Gingras, D.R. Hamann, G. Hautier, X. He, N. Helbig, N. Holzwarth, Y. Jia, F. Jollet, W. Lafargue-Dit-Hauret, K. Lejaeghere, M.A.L. Marques, A. Martin, C. Martins, H.P.C. Miranda, F. Naccarato, K. Persson, G. Petretto, V. Planes, Y. Pouillon, S. Prokhorenko, F. Ricci, G.-M. Rignanese, A.H. Romero, M.M. Schmitt, M. Torrent, M.J. van Setten, B.V. Troeye, M.J. Verstraete, G. Zérah and J.W. Zwanziger, Comput. Phys. Commun. 248, 107042 (2020). doi:10.1016/j.cpc.2019.107042
  • E. Plekhanov, A. Tchougréeff and R. Dronskowski, Comput. Phys. Commun. 251, 107079 (2020). doi:10.1016/j.cpc.2019.107079
  • E.A. Plekhanov and A.L. Tchougréeff, Comput. Mater. Sci. 188, 110140 (2021). doi:10.1016/j.commatsci.2020.110140
  • A. Tchougréeff, E. Plekhanov and R. Dronskowski, J. Comput. Chem. 42 (21), 1498–1513 (2021). doi:10.1002/jcc.v42.21
  • P. Reinhardt, I. Popov and A.L. Tchougréeff, Int. J. Quantum. Chem. 121 (17), e26690 (2021). doi:10.1002/qua.v121.17
  • C. Bunge, J. Barrientos and A. Bunge, At. Data Nucl. Data Tables 53 (1), 113–162 (1993). doi:10.1006/adnd.1993.1003
  • B. Miguel, T. Koga and J.M.G. de la Vega, Theor. Chem. Acc: Theory, Comput, Model. (Theoretica Chimica Acta) 104 (2), 167–171 (2000). doi:10.1007/s002140000125
  • A. Soudackov, A.L. Tchougréeff and I. Misurkin, Russ. J. Phys. Chem. 68, 1135 (1994).
  • H.J. Monkhorst and J.D. Pack, Phys. Rev. B. 13 (12), 5188–5192 (1976). doi:10.1103/PhysRevB.13.5188
  • G.W. Pratt and R. Coelho, Phys. Rev. 116 (2), 281–286 (1959). doi:10.1103/PhysRev.116.281
  • D.R. Huffman, R.L. Wild and M. Shinmei, J. Chem. Phys. 50 (9), 4092–4094 (1969). doi:10.1063/1.1671670
  • K.W. Blazey, Jo. Phys. Chem. Solids 38 (6), 671–675 (1977). doi:10.1016/0022-3697(77)90236-0
  • P. Cox, Transition Metal Oxides (Clarendon Press, Oxford, 1992).
  • S. Acharya, C. Weber, D. Pashov, M. van Schilfgaarde, A.I. Lichtenstein and M.I. Katsnelson, A Theory for Colors of Strongly Correlated Electronic Systems, arXiv 2022. doi:10.48550/arXiv.2204.11081
  • C. Powell, X-ray Photoelectron Spectroscopy Database XPS, Version 4.1, NIST Standard Reference Database National Institute of Standards and Technology, <https://srdata.nist.gov/xps/> 1989, last accessed: 27 May 2022. <https://srdata.nist.gov/xps/>.
  • W. Low, Phys. Rev. 109 (2), 256–265 (1958). doi:10.1103/PhysRev.109.256
  • W. Low, Phys. Rev. 109 (2), 247–255 (1958). doi:10.1103/PhysRev.109.247
  • J.E. Ralph and M.G. Townsend, J. Phys. C: Solid State Phys. 3 (1), 8–18 (1970). doi:10.1088/0022-3719/3/1/002