Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Volume 121, 2023 - Issue 11-12: Special Issue of Molecular Physics in Honour of Péter Szalay
152
Views
1
CrossRef citations to date
0
Altmetric
Péter G. Szalay Special Issue of Molecular Physics

CH4·F revisited: full-dimensional ab initio potential energy surface and variational vibrational states

, , , &
Article: e2113565 | Received 29 Apr 2022, Accepted 08 Aug 2022, Published online: 19 Aug 2022

References

  • G. Avila and E. Mátyus. Full-dimensional (12D) Variational Vibrational States of CH4·F−: Interplay of Anharmonicity and Tunneling, J. Chem. Phys. 151, 154301 (2019). doi:10.1063/1.5124532
  • M. Herman, T. Földes, K. Didriche, C. Lauzin and T. Vanfleteren. Overtone Spectroscopy of Molecular Complexes Containing Small Polyatomic Molecules, Int. Rev. Phys. Chem. 35, 243 (2016). doi:10.1080/0144235X.2016.1171039
  • X.-G. Wang and T. Carrington Jr. Using Monomer Vibrational Wavefunctions to Compute Numerically Exact (12D) Rovibrational Levels of Water Dimer, J. Chem. Phys. 148, 074108 (2018). doi:10.1063/1.5020426
  • X.-G. Wang and T. Carrington. A Variational Calculation of Vibrational Levels of Vinyl Radical, J. Chem. Phys. 152, 204311 (2020). doi:10.1063/5.0007225
  • P.M. Felker and Z. Bačić. Weakly Bound Molecular Dimers: Intramolecular Vibrational Fundamentals, Overtones, and Tunneling Splittings from Full-Dimensional Quantum Calculations Using Compact Contracted Bases of Intramolecular and Low-Energy Rigid-Monomer Intermolecular Eigenstates, J. Chem. Phys. 151, 024305 (2019). doi:10.1063/1.5111131
  • P.M. Felker and Z. Bačić. H2O–CO and D2O–CO Complexes: Intra- and Intermolecular Rovibrational States from Full-Dimensional and Fully Coupled Quantum Calculations, J. Chem. Phys. 153, 074107 (2020). doi:10.1063/5.0020566
  • Y. Liu, J. Li, P.M. Felker and Z. Bačić. HCl–H2O Dimer: An Accurate Full-Dimensional Potential Energy Surface and Fully Coupled Quantum Calculations of Intra- and Intermolecular Vibrational States and Frequency Shifts, Phys. Chem. Chem. Phys. 23, 7101 (2021). doi:10.1039/D1CP00865J
  • P.M. Felker, Y. Liu, J. Li and Z. Bačić. DCl-H2O, HCl-D2O, and DCl-D2O Dimers: Inter- and Intramolecular Vibrational States and Frequency Shifts from Fully Coupled Quantum Calculations on a Full-Dimensional Neural Network Potential Energy Surface, J. Phys. Chem. A 125, 6437 (2021). doi:10.1021/acs.jpca.1c04662
  • P.M. Felker and Z. Bačić. HDO-CO Complex: D-Bonded and H-Bonded Isomers and Intra- and Intermolecular Rovibrational States from Full-Dimensional and Fully Coupled Quantum Calculations, J. Phys. Chem. A. 125, 980 (2021). doi:10.1021/acs.jpca.0c10320
  • D. Lauvergnat and A. Nauts. Exact Numerical Computation of a Kinetic Energy Operator in Curvilinear Coordinates, J. Chem. Phys. 116, 8560 (2002). doi:10.1063/1.1469019
  • E. Mátyus, G. Czakó and A.G. Császár. Toward Black-Box-Type Full- and Reduced-Dimensional Variational (ro)Vibrational Computations, J. Chem. Phys. 130, 134112 (2009). doi:10.1063/1.3076742
  • C. Fábri, E. Mátyus and A.G. Császár. Rotating Full- and Reduced-Dimensional Quantum Chemical Models of Molecules, J. Chem. Phys. 134, 074105 (2011). doi:10.1063/1.3533950
  • C. Fábri, E. Mátyus and A.G. Császár. Numerically Constructed Internal-Coordinate Hamiltonian with Eckart Embedding and its Application for the Inversion Tunneling of Ammonia, Spectrochim. Acta. 119, 84 (2014). doi:10.1016/j.saa.2013.03.090
  • A. Yachmenev and S.N. Yurchenko. Automatic Differentiation Method for Numerical Construction of the Rotational-Vibrational Hamiltonian as a Power Series in the Curvilinear Internal Coordinates Using the Eckart Frame, J. Chem. Phys. 143, 014105 (2015). doi:10.1063/1.4923039
  • D. Lauvergnat and A. Nauts. Quantum Dynamics with Sparse Grids: A Combination of Smolyak Scheme and Cubature. Application to Methanol in Full Dimensionality, Spectrochim. Acta. 119, 18 (2014). doi:10.1016/j.saa.2013.05.068
  • A. Nauts and D. Lauvergnat. Numerical on-the-Fly Implementation of the Action of the Kinetic Energy Operator on a Vibrational Wave Function: Application to Methanol, Mol. Phys. 116, 3701 (2018). doi:10.1080/00268976.2018.1473652
  • A. Martín Santa Daría, G. Avila and E. Mátyus. Variational Vibrational States of HCOOH, J. Mol. Spectrosc. 385, 111617 (2022). doi:10.1016/j.jms.2022.111617
  • G. Avila and T. Carrington. Nonproduct Quadrature Grids for Solving the Vibrational Schrödinger Equation, J. Chem. Phys. 131, 174103 (2009). doi:10.1063/1.3246593
  • G. Avila and T. Carrington. Using Nonproduct Quadrature Grids to Solve the Vibrational Schrödinger Equation in 12D, J. Chem. Phys. 134, 054126 (2011). doi:10.1063/1.3549817
  • G. Avila and T. Carrington. Using a Pruned Basis, a Non-Product Quadrature Grid, and the Exact Watson Normal-Coordinate Kinetic Energy Operator to Solve the Vibrational Schrödinger Equation for C2H4, J. Chem. Phys. 135, 064101 (2011). doi:10.1063/1.3617249
  • G. Avila and E. Mátyus. Toward Breaking the Curse of Dimensionality in (ro)Vibrational Computations of Molecular Systems with Multiple Large-Amplitude Motions, J. Chem. Phys. 150, 174107 (2019). doi:10.1063/1.5090846
  • A. Chen and D. Lauvergnat. ElVibRot-MPI: parallel quantum dynamics with Smolyak algorithm for general molecular simulation, arXiv preprint arXiv:2111.13655 (2021).
  • R. Wodraszka and T. Carrington Jr. A Pruned Collocation-Based Multiconfiguration Time-Dependent Hartree Approach Using a Smolyak Grid for Solving the Schrödinger Equation with a General Potential Energy Surface, J. Chem. Phys. 150, 154108 (2019). doi:10.1063/1.5093317
  • R. Wodraszka and T. Carrington. A Rectangular Collocation Multi-Configuration Time-Dependent Hartree (MCTDH) Approach with Time-Independent Points for Calculations on General Potential Energy Surfaces, J. Chem. Phys. 154, 114107 (2021). doi:10.1063/5.0046425
  • T. Carrington. Using Collocation to Study the Vibrational Dynamics of Molecules, Spectrochim. Acta. 248, 119158 (2021). doi:10.1016/j.saa.2020.119158
  • D. Peláez, K. Sadri and H.-D. Meyer. Full-dimensional MCTDH/MGPF Study of the Ground and Lowest Lying Vibrational States of the Bihydroxide H3O2− Complex, Spectrochim. Acta. 119, 42 (2014). doi:10.1016/j.saa.2013.05.008
  • F. Otto, Y.-C. Chiang and D. Peláez. Accuracy of Potfit-Based Pote] ntial Representations and its Impact on the Performance of (ML-)MCTDH, Chem. Phys. 509, 116 (2018). doi:10.1016/j.chemphys.2017.11.013
  • R.L. Panadés-Barrueta and D. Peláez. Low-Rank Sum-of-Products Finite-Basis-Representation (SOP-FBR) of Potential Energy Surfaces, J. Chem. Phys. 153, 234110 (2020). doi:10.1063/5.0027143
  • T. Halverson and B. Poirier. Large Scale Exact Quantum Dynamics Calculations: Ten Thousand Quantum States of Acetonitrile, Chem. Phys. Lett. 624, 37 (2015). doi:10.1016/j.cplett.2015.02.004
  • T. Halverson and B. Poirier. One Million Quantum States of Benzene, J. Phys. Chem. A. 119, 12417 (2015). doi:10.1021/acs.jpca.5b07868
  • J. Sarka and B. Poirier. Hitting the Trifecta: How to Simultaneously Push the Limits of Schrödinger Solution with Respect to System Size, Convergence Accuracy, and Number of Computed States, J. Chem. Theory Comput. 17, 7732 (2021). doi:10.1021/acs.jctc.1c00824
  • G. Avila, D. Papp, G. Czakó and E. Mátyus. Exact Quantum Dynamics Background of Dispersion Interactions: Case Study for CH4·Ar in Full (12) Dimensions, Phys. Chem. Chem. Phys. 22, 2792 (2020). doi:10.1039/C9CP04426D
  • G. Czakó, B.J. Braams and J.M. Bowman. Accurate ab Initio Structure, Dissociation Energy, and Vibrational Spectroscopy of the F––CH4 Anion Complex, J. Phys. Chem. A. 112, 7466 (2008). doi:10.1021/jp803318a
  • R. Wodraszka, J. Palma and U. Manthe. Vibrational Dynamics of the CH4·F− Complex, J. Phys. Chem. A. 116, 11249 (2012). doi:10.1021/jp3052642
  • C. Fábri, A.G. Császár and G. Czakó. Reduced-Dimensional Quantum Computations for the Rotational-Vibrational Dynamics of F−–CH4 and F−–CH2D2, J. Phys. Chem. A. 117, 6975 (2013). doi:10.1021/jp312160n
  • D.A. Wild, Z.M. Loh and E. Bieske. Infrared Spectra of the F−–CH4 and Br−–CH4 Anion Complexes, Int. J. Mass Spectrom. 220, 273 (2002). doi:10.1016/S1387-3806(02)00771-6
  • Z.M. Loh, R.L. Wilson, D.A. Wild, E.J. Bieske and M.S. Gordon. Structures of F−–(CH4)n and Cl−–(CH4)n (n=1, 2) Anion Clusters Elucidated Through ab Initio Calculations and Infrared Spectra, Aust. J. Chem. 57, 1157 (2004). doi:10.1071/CH04149
  • Z.M. Loh, L. Wilson, D.A. Wild, J. Bieske, J.M. Lisy, B. Njegic and M.S. Gordon. Infrared Spectra and ab Initio Calculations for the F−–(CH4)n(n = 1 − 8) Anion Clusters, J. Phys. Chem. A. 110, 13736 (2006). doi:10.1021/jp0654112
  • D.M. Neumark. Slow Electron Velocity-map Imaging of Negative Ions: Applications to Spectroscopy and Dynamics, J. Phys. Chem. A. 112, 13287 (2008). doi:10.1021/jp807182q
  • T.B. Adler, G. Knizia and H.-J. Werner. A Simple and Efficient CCSD(T)-F12 Approximation, J. Chem. Phys. 127, 221106 (2007). doi:10.1063/1.2817618
  • T.H. Dunning, Jr. Gaussian Basis Sets for use in Correlated Molecular Calculations. I. The Atoms Boron Through Neon and Hydrogen, J. Chem. Phys. 90, 1007 (1989). doi:10.1063/1.456153
  • H.-J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schütz, et al. Molpro, version 2015.1, a Package of ab initio Programs. http://www.molpro.net.
  • B.J. Braams and J.M. Bowman. Permutationally Invariant Potential Energy Surfaces in High Dimensionality, Int. Rev. Phys. Chem. 28, 577 (2009). doi:10.1080/01442350903234923
  • T. Győri and G. Czakó. Automating the Development of High-Dimensional Reactive Potential Energy Surfaces with the Robosurfer Program System, J. Chem. Theory Comput. 16, 51 (2020). doi:10.1021/acs.jctc.9b01006
  • G. Czakó, T. Győri, D. Papp, V. Tajti and D.A. Tasi. First-Principles Reaction Dynamics Beyond Six-Atom Systems, J. Phys. Chem. A. 125, 2385 (2021). doi:10.1021/acs.jpca.0c11531
  • D. Papp and G. Czakó. Facilitated Inversion Complicates the Stereodynamics of an SN2 Reaction at Nitrogen Center, Chem. Sci. 12, 5410 (2021). doi:10.1039/D1SC00490E
  • J. Meyer, V. Tajti, E. Carrascosa, T. Győri, M. Stei, T. Michaelsen, B. Bastian, G. Czakó and R. Wester. Atomistic Dynamics of Elimination and Nucleophilic Substitution Disentangled for the F−+CH3CH2Cl Reaction, Nat. Chem. 13, 977 (2021). doi:10.1038/s41557-021-00753-8
  • D.A. Tasi and G. Czakó. Uncovering an Oxide Ion Substitution for the OH−+CH3F Reaction, Chem. Sci. 12, 14369 (2021). doi:10.1039/D1SC03834F
  • W.L. Hase, Encyclopedia of Computational Chemistry (Wiley, New York, 1998), 399–407.
  • X.G. Wang and T. Carrington Jr. Using Experimental Data and a Contracted Basis Lanczos Method to Determine an Accurate Methane Potential Energy Surface from a Least Squares Optimization, J. Chem. Phys. 141, 154106 (2014). doi:10.1063/1.4896569
  • C. Petty, R.F.K. Spada, F.B.C. Machado and B. Poirier. Accurate Rovibrational Energies of Ozone Isotopologues up to J=10 Utilizing Artificial Neural Networks, J. Chem. Phys. 149, 024307 (2018). doi:10.1063/1.5036602
  • S. Albert, S. Bauerecker, V. Boudon, L.R. Brown, J.-P. Champion, M. Loete, A. Nikitin and M. Quack. Global Analysis of the High Resolution Infrared Spectrum of Methane 12CH4 in the Region from 0 to 4800 cm−1, Chem. Phys. 356, 131 (2009). doi:10.1016/j.chemphys.2008.10.019
  • J. Sarka, A.G. Császár, S.C. Althorpe, D.J. Wales and E. Mátyus. Rovibrational Transitions of the Methane-Water Dimer from Intermolecular Quantum Dynamical Computations, Phys. Chem. Chem. Phys. 18, 22816 (2016). doi:10.1039/C6CP03062A
  • A. Martín Santa Daría, G. Avila and E. Mátyus. Performance of a Black-box-Type Rovibrational Method in Comparison with a Tailor-Made Approach: Case Study for the Methane–Water Dimer, J. Chem. Phys. 154, 224302 (2021). doi:10.1063/5.0054512
  • A. Martín Santa Daría, G. Avila and E. Mátyus. Fingerprint Region of the Formic Acid Dimer: Variational Vibrational Computations in Curvilinear Coordinates, Phys. Chem. Chem. Phys. 23, 6526 (2021). doi:10.1039/D0CP06289H
  • J. C. Light and T. Carrington Jr, Discrete-Variable Representations and Their Utilization, Chap. 14, in Adv. Chem. Phys. (John Wiley & Sons, Ltd, 2000) 263–310.
  • G. Schiffel and U. Manthe. On Direct Product Based Discrete Variable Representations for Angular Coordinates and the Treatment of Singular Terms in the Kinetic Energy Operator, Chem. Phys. 374, 118 (2010). doi:10.1016/j.chemphys.2010.07.006
  • R.J. Whitehead and N.C. Handy. Variational Calculation of Vibration-Rotation Energy Levels for Triatomic Molecules, J. Mol. Spectrosc. 55, 356 (1975). doi:10.1016/0022-2852(75)90274-X
  • D. Ferenc and E. Mátyus. Bound and Unbound Rovibrational States of the Methane-Argon Dimer, Mol. Phys. 117, 1694 (2019). doi:10.1080/00268976.2018.1547430
  • J. S. Coursey, D. J. Schwab, J. J. Tsai and R. A. Dragoset, Atomic Weights and Isotopic Compositions (version 4.1). National Institute of Standards and Technology, Gaithersburg, MD (2015), http://physics.nist.gov/Comp (accessed May 12, 2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.