Publication Cover
Molecular Physics
An International Journal at the Interface Between Chemistry and Physics
Latest Articles
32
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Complexation between inorganic-fullerene B12N12 nanocage cluster and Schiff’s bases of trans-2-hexenal with cytosine and L-leucine

, , , , ORCID Icon &
Article: e2371054 | Received 09 May 2024, Accepted 17 Jun 2024, Published online: 04 Jul 2024

References

  • Y. Du, B. Yang, Z. Yi, L. Hu and M. Li, J. Agric. Food Chem 68, 2146–2154 (2020). doi:10.1021/acs.jafc.9b07916.
  • Y. Xiao, Y. Wu, K. Zhong and H. Gao, RSC Adv. 9, 41269–41279 (2019). doi:10.1039/c9ra07655g.
  • U. Dittberner, B. Schmetzer, P. Golzer and G. Eisenbrand, Mutat. Res. 390, 161–165 (1997). doi:10.1016/s0165-1218(97)00013-x.
  • U. Dittberner, G. Eisenbrand and H. Zankl, Mutat. Res. 335, 259–265 (1995). doi:10.1016/0165-1161(95)00029-1.
  • J. Wakai, S. Kusama, K. Nakajima, S. Kawai and Y. Okumura, Sci. Rep. 9, 1–5 (2019). doi:10.1038/s41598-019-46307-4.
  • A.C. Clark and R.C. Deed, J. Agric. Food Chem 66, 1214–1221 (2018). doi:10.1021/acs.jafc.7b04991.
  • K.Y.M. Yung, T.H.R.H.A. Emp and D.O.D.A. Rchbold, J. Agric. Food Chem. 54, 1442–1448 (2006). doi:10.1021/jf052068 + .
  • M.R. Corbo, R. Lanciotti, F. Gardini, M. Sinigaglia and M.E. Guerzoni, J. Agric. Food Chem. 48, 2401–2408 (2000). doi:10.1021/jf991223f.
  • Y. Zhao, S. Xu, H. Lu, D. Zhang, F. Liu, J. Lin, C. Zhou and W. Mu, Pestic. Biochem. Physiol 143, 147–153 (2017). doi:10.1016/j.pestbp.2017.08.004.
  • H.W. Gardner, D.L.J. Dornbos, A.E. Desjardins, J. Agric. Food Chem. 38, 1316–1320 (1990).
  • P. Dolez, J. Chmelı, A.G. Baker and M. Novotny, Chem. Res. Toxicol. 10, 702–710 (1997). doi:10.1021/tx960118m.
  • V. Lazazzara, C. Buesc, A. Parich, I. Pertot, R. Schuhmacher and M. Perazzolli, Sci. Rep. 8, 1–14 (2018). doi:10.1038/s41598-018-19776-2.
  • F. Neri, M. Mari, A.M. Menniti, S. Brigati and P. Bertolini, Postharvest Biol. Technol. 41, 101–108 (2006). doi:10.1016/j.postharvbio.2006.02.005.
  • H. Lu, S. Xu, W. Zhang, C. Xu, B. Li, D. Zhang, W. Mu and F. Liu, J. Agric. Food Chem 65, 544–550 (2017). doi:10.1021/acs.jafc.6b04091.
  • R.W. Layer, Chem. Rev. 2, 489–510 (1966). doi:10.1021/cr60225a003.
  • T. Nagata, M. Koyanagi, X. Deupi and A. Terakita, Commun. Biol. 2, 1–9 (2019). doi:10.1038/s42003-019-0409-3.
  • A.M. Abu-Dief and I.M.A. Mohamed, J. Basic Appl. Sci. 4, 119–133 (2015). doi:10.1016/j.bjbas.2015.05.004.
  • M.M. Abd-Elzaher, A.A. Labib, H.A. Mousa, S.A. Moustafa, M.M. Ali and A.A. El-Rashedy, J. Basic Appl. Sci. 5, 85–96 (2016). doi:10.1016/j.bjbas.2016.01.001.
  • A.S. El-Tabl, M. Mohamed Abd El-Waheed, M.A. Wahba and N. Abd El-Halim Abou El-Fadl, Bioinorg. Chem. Appl. 2015 (2015). doi:10.1155/2015/126023.
  • G. Seifert, P.W. Fowler, D. Mitchell, D. Porezag and T. Frauenheim, Chem. Phys. Lett. 268, 352–358 (1997). doi:10.1016/S0009-2614(97)00214-5.
  • L. Palomino-Asencio, E. García-Hern´andez, M. Salazar-villanueva and E. Chigo-Anota, Physica E. 126, 114456 (2021). doi:10.1016/j.physe.2020.114456.
  • M.T. Baei, Heteroat. Chem. 24, 476–481 (2013). doi:10.1002/hc.
  • A. Berisha, Sci. Rep. 13, 1–11 (2023). doi:10.1038/s41598-023-28055-8.
  • M.R.S.A. Janjua, Z.M. Su, W. Guan, C.G. Liu, L.K. Yan, P. Song and G. Maheen, Aust. J. Chem. 63, 836–844 (2010). doi:10.1071/CH10094.
  • M.R.S.A. Janjua, W. Guan, L. Yan, Z.M. Su, A. Karim and J. Akbar, Eur. J. Inorg. Chem. 3466–3472 (2010). doi:10.1002/ejic.201000428.
  • M.I. Abdullah, M.R.S.A. Janjua, M.F. Nazar and A. Mahmood, Bull. Chem. Soc. Jpn. 86, 1272–1281 (2013). doi:10.1246/bcsj.20130146.
  • A. Irfan, M. Hussien, M.Y. Mehboob, A. Ahmad and M.R.S.A. Janjua, Energy Technol. 10, 2101096 (2022). doi:10.1002/ente.202101096.
  • M.R.S.A. Janjua, J. Phys. Chem. Solids. 171, 110996 (2022). doi:10.1016/j.jpcs.2022.110996.
  • M.R.S.A. Janjua, Inorg. Chem. 60, 10837–10847 (2021). doi:10.1021/acs.inorgchem.1c01760.
  • M.R.S.A. Janjua, Inorg. Chem. 60, 2816–2828 (2021). doi:10.1021/acs.inorgchem.0c03730.
  • M. Ramzan, S. Ashraf, A. Mahmood and F. Ahmad, Can.J.Chem. 1309, 1303–1309 (2013).
  • M.R.S.A. Janjua, Energy Technol. 9, 1–12 (2021). doi:10.1002/ente.202100489.
  • M.R.S.A. Janjua, S. Jamil, A. Mahmood, A. Zafar, M. Haroon and H.N. Bhatti, Aust. J. Chem. 68, 1502–1507 (2015). doi:10.1071/CH14736.
  • L. Mahdavian, Russ. J. Appl. Chem. 89, 1528–1535 (2016). doi:10.1134/S1070427216090226.
  • L. Feng, Y. Lu, J. Kong and Z. Su, Comput. Theor. Chem. 964, 56–64 (2011). doi:10.1016/j.comptc.2010.11.036.
  • M. Noei, Vacuum. 135, 44–49 (2017). doi:10.1016/j.vacuum.2016.10.029.
  • R.V. Tal’roze and N.A. Platé, Structural Transformations of Thermotropic Liquid-Crystal Polymers in Electric and Magnetic Fields BT - Liquid-Crystal Polymers, edited by N.A. Platé (Springer US, Boston, MA, 1993), pp. 303–338. doi:10.1007/978-1-4899-1103-2_8.
  • L. Geng, T. Sengupta, X. Li, C. Cui, S. Lin, X.L. Xu, A.C. Reber, S.N. Khanna, W.J. Zheng and Z. Luo, J. Am. Chem. Soc. 145, 26908–26914 (2023). doi:10.1021/jacs.3c09690.
  • W.A. Gill, N. Alhokbany and M.R.S.A. Janjua, RSC Adv. 14, 3782–3789 (2024). doi:10.1039/d3ra07480c.
  • M.R.S.A. Janjua, J. Phys. Chem. Solids. 167, 110789 (2022). doi:10.1016/j.jpcs.2022.110789.
  • P. Surendar, T. Pooventhiran, N. Al-Zaqri, S. Rajam, D. Jagadeeswara Rao and R. Thomas, J. Mol. Liq 341, 117305 (2021). doi:10.1016/j.molliq.2021.117305.
  • P. Surendar, T. Pooventhiran, S. Rajam, U. Bhattacharyya, A. Bakht and R. Thomas, J. Mol. Liq. 334, 116448 (2021). doi:10.1016/j.molliq.2021.116448.
  • P. Surendar, T. Pooventhiran, S. Rajam, A. Irfan and R. Thomas, J. Comput. Biophys. Chem. 21, 1–22 (2022). doi:10.1142/S2737416522500016.
  • P. Surendar, T. Pooventhiran, S. Rajam, D.J. Rao, N. Manigandan, A. Irfan and R. Thomas, Biointerface Res. Appl. Chem. 13, 1–46 (2023).
  • M.K. Gilson, H.S.R. Gilson and M.J. Potter, J. Chem. Inf. Comput. Sci. 43, 1982–1997 (2003). doi:10.1021/ci034148o.
  • W. Chen, J. Huang and M.K. Gilson, J. Chem. Inf. Comput. Sci. 44, 1301–1313 (2004). doi:10.1021/ci049966a.
  • J. Wang, W. Wang, P.A. Kollman and D.A. Case, J. Mol. Graph. Model. 25, 247–260 (2006). doi:10.1016/j.jmgm.2005.12.005.
  • S.L. Mayo, B.D. Olafson and W.A. Goddard, J. Phys. Chem. 94, 8897–8909 (1990). doi:10.1021/j100389a010.
  • C.E. Chang and M.K. Gilson, J. Comput. Chem. 24, 1987–1998 (2003). doi:10.1002/jcc.10325.
  • J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman and D.A. Case, J. Comput. Chem. 25, 1157–1174 (2004). doi:10.1002/jcc.20035.
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M. a. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G. a. Petersson, H. Nakatsuji, X. Li, M. Caricato, a. V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J. V. Ortiz, a. F. Izmaylov, J.L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. a. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T. a. Keith, R. Kobayashi, J. Normand, K. Raghavachari, a. P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox and G16_C01. Gaussian 16, Revision C.01 (Gaussian, Wallin, 2016).
  • A.D. Becke, J. Chem. Phys. 98, 1372–1377 (1993).doi:10.1063/1.464304.
  • A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993). doi:10.1063/1.464913.
  • C. Lee, W. Yang and R.G. Parr, Phys. Rev. B. 37, 36–39 (2011).
  • P.C. Hariharan and J.A. Pople, Theor. Chim. Acta. 28, 213–222 (1973). doi:10.1021/acs.inorgchem.8b01875.
  • T. Pooventhiran, N. Khilari and D. Koley, Chem. A Eur. J. 202302983, 1–12 (2023). doi:10.1002/chem.202302983.
  • P.J. Hay and W.R. Wadt, J. Chem. Phys. 82, 270–283 (1985). doi:10.1063/1.448799.
  • P.J. Hay and W.R. Wadt, J. Chem. Phys. 82, 299–310 (1985). doi:10.1063/1.448975.
  • V. Barone and M. Cossi, J. Phys. Chem. A. 102, 1995–2001 (1998). doi:10.1021/jp9716997.
  • S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys. 132, 154104 (2010). doi:10.1063/1.3382344.
  • V.S. Bryantsev, M.S. Diallo and W.A. Goddard, J. Phys. Chem. B. 112, 9709–9719 (2008). doi:10.1021/jp802665d.
  • A.E. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev. 88, 899–926 (1988). doi:10.1021/cr00088a005.
  • N.K. Nkungli, J.N. Ghogomu, L.N. Nogheu and S.R. Gadre, Comput. Chem. 03, 29–44 (2015). doi:10.4236/cc.2015.33005.
  • T. Lu and F. Chen, J. Comput. Chem. 33, 580–592 (2012). doi:10.1002/jcc.22885.
  • C.Y. Legault, CYLview20 - Build 0001, Univ. Sherbrooke, 2020.
  • F. Neese, WIRES Comput. Mol. Sci. 2, 73–78 (2012). doi:10.1002/wcms.81.
  • F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, 1–6 (2018). doi:10.1002/wcms.1327.
  • W.B. Schneider, G. Bistoni, M. Sparta, M. Saitow, C. Riplinger, A.A. Auer and F. Neese, J. Chem. Theory Comput. 12, 4778–4792 (2016). doi:10.1021/acs.jctc.6b00523.
  • A. Altun, M. Saitow, F. Neese and G. Bistoni, J. Chem. Theory Comput. 15, 1616–1632 (2019). doi:10.1021/acs.jctc.8b01145.
  • G. Bistoni, Wiley Interdiscip. Rev. Comput. Mol. Sci. 10, e1442 (2020). doi:10.1002/wcms.1442.
  • A. Altun, F. Neese and G. Bistoni, J. Chem. Theory Comput. 15, 215–228 (2019). doi:10.1021/acs.jctc.8b00915.
  • A. Altun, R. Izsák and G. Bistoni, Int. J. Quantum Chem. 121, e26339 (2021). doi:10.1002/qua.26339.
  • A. Altun, F. Neese and G. Bistoni, Beilstein J. Org. Chem. 14, 919–929 (2018). doi:10.3762/BJOC.14.79.
  • S.F. Boys, Rev. Mod. Phys. 32, 296–299 (1960). doi:10.1103/RevModPhys.32.296.
  • C. Riplinger, P. Pinski, U. Becker, E.F. Valeev and F. Neese, J. Chem. Phys. 144, 024109 (2016). doi:10.1063/1.4939030.
  • D.G. Liakos, M. Sparta, M.K. Kesharwani, J.M.L. Martin and F. Neese, J. Chem. Theory Comput. 11, 1525–1539 (2015). doi:10.1021/ct501129s.
  • B. De Souza, F. Neese and R. Izsák, J. Chem. Phys. 148, 034104 (2018). doi:10.1063/1.5010895.
  • B. De Souza, G. Farias, F. Neese and R. Izsák, J. Chem. Theory Comput. 15, 1896–1904 (2019). doi:10.1021/acs.jctc.8b00841.
  • N. Al-Zaqri, T. Pooventhiran, A. Alsalme, I. Warad, A.M. John and R. Thomas, J. Mol. Liq. 318, 114082 (2020). doi:10.1016/j.molliq.2020.114082.
  • A. Alsalme, T. Pooventhiran, N. Al-Zaqri, D.J. Rao, S.S. Rao and R. Thomas, J. Mol. Model. 26, 341 (2020). doi:10.1007/s00894-020-04603-1.
  • R. Pal, G. Jana and P.K. Chattaraj, Theor. Chem. Acc. 139, 1–17 (2020). doi:10.1007/s00214-019-2532-0.
  • R.G. Parr and R.G. Pearson, J. Am. Chem. Soc. 105, 7512–7516 (1983). doi:10.1021/ja00364a005.
  • P.K. Chattaraj and S. Giri, Annu. Rep. Prog. Chem. Sect. C Phys. Chem. 105, 13–39 (2009). doi:10.1039/B802832J.
  • P.K. Chattaraj, U. Sarkar and D.R. Roy, Chem. Rev. 106, 2065–2091 (2006). doi:10.1021/cr040109f.
  • R.G. Parr, L.v. Szentpály and S. Liu, J. Am. Chem. Soc. 121, 1922–1924 (1999). doi:10.1021/ja983494x.
  • R. Parthasarathi, V. Subramanian, D.R. Roy and P.K. Chattaraj, Bioorg. Med. Chem. 12, 5533–5543 (2004). doi:10.1016/j.bmc.2004.08.013.
  • M.R.S.A. Janjua, Mol. Simul. 43, 1539–1545 (2017). doi:10.1080/08927022.2017.1332413.
  • R. Mahmood, M.R.S.A. Janjua and S. Jamil, J. Clust. Sci. 28, 3175–3183 (2017). doi:10.1007/s10876-017-1287-9.
  • M. Haroon and M.R.S.A. Janjua, J. Comput. Electron. 21, 40–51 (2022). doi:10.1007/s10825-021-01838-w.
  • A.V. Ilavarasi, F. Paularokiadoss, L.M. Novena, T. Pooventhiran, S. Erkan, C.A. Celaya, R. Thomas, D.R. Ampasala and T.C. Jeyakumar, Chem. Phys. Impact. 7, 100289 (2023). doi:10.1016/j.chphi.2023.100289.
  • M.A. Bakht, T. Pooventhiran, R. Thomas, M. Kamal, I.U. Din, N.U. Rehman, I. Ali, N. Ajmal and M.J. Ahsan, Molecules. 28, 1944 (2023).
  • R. Thomas, T. Pooventhiran, in Adv. Mater. Nano Syst. Theory Exp. - Part 2, edited by D.P. Rai (2022), pp. 252–270 (19). doi:10.2174/97898150499611220201.
  • M. Afroz, F. Azam, A. Ali, R. Thomas, T. Pooventhiran, A. Ali and M. Jawed, J. Mol. Struct. 1248, 131509 (2022). doi:10.1016/j.molstruc.2021.131509.
  • S. Krishna, E. Pagadala, V. Srinivasadesikan, R. Jeya, R. Samdavid, T. Pooventhiran, R. Thomas, G. Naganjaneyulu and R.K. Kottalanka, Inorg. Chem. Commun. 133, 108936 (2021). doi:10.1016/j.inoche.2021.108936.
  • T. Pooventhiran, U. Bhattacharyya, D.J. Rao, V. Chandramohan and P. Karunakar, Struct. Chem 31, 2475–2485 (2020). doi:10.1007/s11224-020-01607-8.
  • N. Al-Zaqri, T. Pooventhiran, A. Alsalme, D.J. Rao, S.S. Rao, A. Sankar and R. Thomas, Polycycl. Aromat. Compd. 0, 1–15 (2020). doi:10.1080/10406638.2020.1857273.
  • Y. Jia, H. Wu, X. Zhao, H. Zhang, L. Geng, H. Zhang, S.D. Li, Z. Luo and K. Hansen, Nanoscale. 13, 11396–11402 (2021). doi:10.1039/d1nr02372a.
  • M. Yang, D. Huang, H. Wu, H. Zhang, P. An, C. Yuan, P. Su and Z. Luo, Chem. Select. 4, 9978–9986 (2019). doi:10.1002/slct.201902100.
  • M.A. Bakht, A.I. Alharthi, P. Thangaiyan, A. Ahmad, I. Ali and R. Thomas, Comput. Theor. Chem. 1228, 114299 (2023).
  • R. Thomas, T. Pooventhiran, A. Bakht, A.Y. Alzahrani and M.A. Salem, J. Mol. Liq. 368, 120708 (2022). doi:10.1016/j.molliq.2022.120708.
  • R. Thomas and T. Pooventhiran, J. Mol. Liq. 368, 120721 (2022). doi:10.1016/j.molliq.2022.120721.
  • T. Pooventhiran, A. Yahya, A. Alzahrani, K.J. Rajimon and R. Thomas, J. Mol. Struct. 1273, 134347 (2022). doi:10.1016/j.molstruc.2022.134347.
  • G. Prathiksha, T. Pooventhiran, M. Afroz Bakht and R. Thomas, J. Mol. Liq. 362, 119678 (2022). doi:10.1016/j.molliq.2022.119678.
  • R. Thomas, T. Pooventhiran, S.M. El-Bahy, I.H. El Azab, G.A.M. Mersal, M.M. Ibrahim and Z.M. El-Bahy, J. Mol. Liq. 359, 119289 (2022). doi:10.1016/j.molliq.2022.119289.
  • T. Pooventhiran and R. Thomas, J. Mol. Liq. 354, 118856 (2022). doi:10.1016/j.molliq.2022.118856.
  • T. Pooventhiran, B.S. Gangadharappa, O.A. Abu Ali, R. Thomas and D.I. Saleh, J. Mol. Liq 352, 118672 (2022). doi:10.1016/j.molliq.2022.118672.
  • A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. USA. 99, 12562–12566 (2002). doi:10.1073/pnas.202427399.
  • S. Grimme, J. Chem. Theory Comput. 15, 2847–2862 (2019). doi:10.1021/acs.jctc.9b00143.
  • A. Barducci, G. Bussi and M. Parrinello, Phys. Rev. Lett. 100, 020603 (2008). doi:10.1103/PhysRevLett.100.020603.
  • M. Iannuzzi, A. Laio and M. Parrinello, Phys. Rev. Lett. 90, 23–26 (2003). doi:10.1103/PhysRevLett.90.238302.
  • S. Vasudevan and A.K. Tummanapelli, J. Phys. Chem. B. 118, 13651–13657 (2014). doi:10.1021/jp5088898.
  • A.K. Tummanapelli and S. Vasudevan, Phys. Chem. Chem. Phys. 17, 6383–6388 (2015). doi:10.1039/C4CP06000H.
  • J. Meller, Encycl. Life Sci. 1, 253–273 (2023). doi:10.1201/9781003096214-17.
  • T. Pooventhiran, R. Thomas, U. Bhattacharyya, S. Sowrirajan, A. Irfan and D.J. Rao, Vietnam J. Chem. 59, 887–901 (2021). doi:10.1002/vjch.202100067.
  • T. Pooventhiran, N. Al-Zaqri, A. Alsalme, U. Bhattacharyya and R. Thomas, J. Mol. Liq. 325, 114810 (2021).
  • F. Weinhold, D. Glendening, NBO 7.0 Program Manual: Natural Bond Orbital Analysis Programs, 2001. http://nbo7.chem.wisc.edu/
  • A.M. John, J. Jose, R. Thomas, K.J. Thomas and S.P. Balakrishnan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 236, 118329 (2020). doi:10.1016/j.saa.2020.118329.
  • P.R. Kavitha Rani, Y.S. Mary, A. Fernandez, Y.S. Mary, and R. Thomas, Comput. Biol. Chem. 78, 153–164 (2019).
  • A. Altun, F. Neese and G. Bistoni, J. Chem. Theory Comput. 15, 5894–5907 (2019). doi:10.1021/acs.jctc.9b00425.
  • J.G. Brandenburg, C. Bannwarth, A. Hansen and S. Grimme, J. Chem. Phys. 148, 064104 (2018). doi:10.1063/1.5012601.
  • S. Tabassum, P. Thangaiyan, S. Govindaraju, N.K. Daniel and R. Thomas, Polycycl. Aromat. Compd 43, 8544–8561 (2023). doi:10.1080/10406638.2022.2149564.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.