539
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Bayesian Modal Estimation of the Four-Parameter Item Response Model in Real, Realistic, and Idealized Data Sets

&

References

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & B. F. Csaki (Eds.), Second international symposium on information theory (pp. 267–281). Budapest: Akademiai Kiado.
  • Barton, M., & Lord, F. (1981). An upper asymptote for the three-parameter logistic item-response model. (Research Report No. 81–20). Princeton, NJ: Educational Testing Service.
  • Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental test scores. Reading, MA: Addison-Wesley.
  • Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443–459.
  • Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full-information item factor analysis. Applied Psychological Measurement, 12, 261–280.
  • Bock, R. D., & Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. Psychometrika, 35, 179–197.
  • Bock, R. D., & Mislevy, R. J. (1982). Adaptive EAP estimation of ability in a microcomputer environment. Applied Psychological Measurement, 6, 431–444.
  • Butcher, J. N., Williams, C. L., Graham, J. R., Archer, R. P., Tellegen, A., Ben-Porath, Y. S., & Kaemmer, B. (1992). MMPI-A (Minnesota Multiphasic Personality Inventory–Adolescent): Manual for administration, scoring, and interpretation. Minneapolis, MN: University of Minnesota Press.
  • Carroll, J. B. (1945). The effect of difficulty and chance success on correlations between items or between tests. Psychometrika, 10, 1–19.
  • Carroll, J. B. (1961). The nature of data, or how to choose a correlation coefficient. Psychometrika, 26, 347–372.
  • Cattell, R. B., & Gorsuch, R. L. (1963). The uniqueness and significance of simple structure demonstrated by contrasting organic “natural structure” and “random structure” data. Psychometrika, 28, 55–67.
  • Cattell, R. B., & Sullivan, W. (1962). The scientific nature of factors: A demonstration by cups of coffee. Behavioral Science, 7, 184–193.
  • Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48, 1–29.
  • Cheng, Y., & Liu, C. (2015). The effect of upper and lower asymptotes of IRT models on computerized adaptive testing. Applied Psychological Measurement, 39, 551-565.
  • Culpepper, S. A. (2016). Revisiting the 4-parameter item response model: Bayesian estimation and application. Psychometrika, 81, 1142–1163.
  • Drasgow, F. (1989). An evaluation of marginal maximum likelihood estimation for the two-parameter logistic model. Applied Psychological Measurement, 13, 77–90.
  • de Gruijter, D. N. M. (1984). A comment on‘some standard errors in item response theory’. Psychometrika, 49, 269–272.
  • Feuerstahler, L. M., & Waller, N. G. (2014). Estimation of the 4-parameter model with marginal maximum likelihood. Multivariate Behavioral Research, 49, 285.
  • Gadbury, G. L., Xiang, Q., Yang, L., Barnes, S., Page, G. P., & Allison, D. B. (2008). Evaluating statistical methods using plasmode data sets in the age of massive public databases: An illustration using false discovery rates. PLoS Genetics, 4, 1–8.
  • Gao, F., & Chen, L. (2005). Bayesian or non-Bayesian: A comparison study of item parameter estimation in the three-parameter logistic model. Applied Measurement in Education, 18, 351—380.
  • Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2003). Bayesian data analysis. London: Chapman & Hall.
  • Gelman, A., & Shalizi, C. R. (2013). Philosophy and the practice of Bayesian statistics. British Journal of Mathematical and Statistical Psychology, 66, 8–38.
  • Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: Principles and applications. Boston, MA: Kluwer Academic.
  • Hetland, M. L. (2013). Simulating ability: Representing skills in games. In M. Ma, M. F. Oliveira, S. Petersen, & J. B. Hauge (Eds.), Serious games development and applications (pp. 226–238). New York: Springer.
  • Hulin, C. L., Lissak, R. I., & Drasgow, F. (1982). Recovery of two- and three-parameter logistic item characteristic curves: A Monte Carlo study. Applied Psychological Measurement, 6, 249–260.
  • Kang, T., & Cohen, A. S. (2007). IRT model selection methods for dichotomous items. Applied Psychological Measurement, 31, 331–358.
  • Lawley, D. N. (1943). On problems connected with item selection and test construction. Proceedings of the Royal Society of Edinburgh, 61, 273–287.
  • Liang, L., & Browne, M. W. (2015). A quasi-parametric method for fitting flexible item response functions. Journal of Experimental and Behavioral Statistics, 40, 5–34.
  • Liao, W.-W., Ho, R.-G., Yen, Y.-C., & Cheng, H.-C. (2012). The four-parameter logistic item response theory model as a robust method of estimating ability despite aberrant responses. Social Behavior and Personality, 40, 1679–1694.
  • Loken, E., & Rulison, K. (2010). Estimation of a four-parameter item response theory model. British Journal of Mathematical and Statistical Psychology, 63, 509–525.
  • Lord, F. (1952). A theory of test scores. Psychometric Monographs, No. 7.
  • Lord, F. M. (1968). An analysis of the verbal scholastic aptitude test using Birnbaum's three-parameter logistic model. Educational and Psychological Measurement, 28, 989–1020.
  • Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Erlbaum.
  • Magis, D. (2013). A note on the item information function of the four-parameter logistic model. Applied Psychological Measurement, 37, 304–315.
  • Maydeu-Olivares, A., & Cai, L. (2006). A cautionary note on using G2(dif) to assess relative model fit in categorical data analysis. Multivariate Behavioral Research, 41, 55–64.
  • McDonald, R. P. (1967). Nonlinear factor analysis. Psychometric Monographs, No. 15.
  • Mislevy, R. J. (1986). Bayes modal estimation in item response models. Psychometrika, 51, 177–195.
  • Muraki, E. & Engelhard, G. (1985). Full-information item factor analysis: Applications of EAP scores. Applied Psychological Measurement, 9, 417–430.
  • Ogasawara, H. (2002). Stable response functions with unstable item parameter estimates. Applied Psychological Measurement, 26, 239–254.
  • Patz, R. J., & Junker, B. W. (1999). A straightforward approach to Markov chain Monte Carlo methods for item response models. Journal of Educational and Behavioral Statistics, 24, 146–178.
  • R Core Team. (2015). R: A language and environment for statistical computing [Computer software]. Vienna, Austria. Retrieved from http://www.R-project.org/
  • Raju, N. S., van der Linden, W. J., & Fleer, P. F. (1995). IRT-based internal measures of differential functioning of items and tests. Applied Psychological Measurement, 19, 353–368.
  • Ramsay, J. O. (1991). Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika, 56, 611–630.
  • Reise, S., & Waller, N. (2001). Item response theory for dichotomous assessment data. In F. Drasgow & N. W. Schmitt (Eds.), Measuring and analyzing behavior in organizations: Advances in measurement and data analysis (pp. 88–122). San Francisco, CA: Jossey-Bass.
  • Reise, S., & Waller, N. (2003). How many IRT parameters does it take to model psychopathology items? Psychological Methods, 8, 164–184.
  • Rulison, K. L., & Loken, E. (2009). I’ve fallen and I can’t get up: Can high-ability students recover from early mistakes in CAT? Applied Psychological Measurement, 33, 83–101.
  • Schwartz, G. (1978). Estimating the dimensions of a model. Annals of Statistics, 6, 461–464.
  • Skaggs, G., & Stevenson, J. (1989). A comparison of pseudo-Bayesian and joint maximum likelihood procedures for estimating item parameters in the three-parameter IRT model. Applied Psychological Measurement, 13, 391—402.
  • Stocking, M. L. (1990). Specifying optimum examinees for item parameter estimation in item response theory. Psychometrika, 55, 461–475.
  • Stocking, M. L., & Lord, F. M. (1983). Developing a common metric in item response theory. Applied Psychological Measurement, 7, 201–210.
  • Swaminathan, H., & Gifford, J. A. (1986). Bayesian estimation in the three-parameter logistic model. Psychometrika, 51, 589–601.
  • Tavares, H. R., Andrade, D. F. d., & Pereira, C. A. d. B. (2004). Detection of determinant genes and diagnostic via item response theory. Genetics and Molecular Biology, 27, 679–685.
  • Thissen, D., & Wainer, H. (1982). Some standard errors in item response theory. Psychometrika, 47, 397–412.
  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58, 267–288.
  • Wainer, H. (1993). Model-based standardized measurement of an item's differential impact. In P. W. Holland & H. Wainer (Eds.), Differential item functioning (pp. 123–135). Hillsdale, NJ: Erlbaum.
  • Waller, N. G., & Reise, S. P. (2010). Measuring psychopathology with non-standard IRT models: Fitting the four-parameter model to the MMPI. In S. Embretson & J. S. Roberts (Eds.), Measuring psychological constructs: Advances in model-based approaches (pp. 147–173). Washington, DC: American Psychological Association.
  • Waller, N. G., Underhill, J. M., & Kaiser, H. A. (1999). A method for generating simulated plasmodes and artificial test clusters with user-defined shape, size, and orientation. Multivariate Behavioral Research, 34, 123–142.
  • Whittaker, T. A., Chang, W., & Dodd, B. G. (2013). The impact of varied discrimination parameters on mixed-format item response theory model selection. Educational and Psychological Measurement, 73, 471–490.
  • Yen, Y.-C., Ho, R.-G., Laio, W.-W., Chen, L.-J., & Kuo, C.-C. (2012). An empirical evaluation of the slip correction in the four parameter logistic models with computerized adaptive testing. Applied Psychological Measurement, 36, 75–87.
  • Yoes, M. (1995). An updated comparison of micro-computer based item parameter estimation procedures used with the 3-parameter IRT model (Technical Report 95-1). Saint Paul, MN: Assessment Systems Corporation.
  • Yuan, K.-H., Cheng, Y., & Patton, J. (2014). Information matrices and standard errors for MLEs of item parameters in IRT. Psychometrika, 79, 232–254.
  • Zeng, L. (1997). Implementation of marginal Bayesian estimation with four-parameter beta prior distributions. Applied Psychological Measurement, 21, 143–156.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.