906
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Practical Tools and Guidelines for Exploring and Fitting Linear and Nonlinear Dynamical Systems Models

References

  • Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, CA: Sage.
  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), Second international symposium on information theory (pp. 267–281). Budapest, Hungary: Akademiai Kiado.
  • Arminger, G. (1986). Linear stochastic differential equation models for panel data with unobserved variables. In N. Tuma (Ed.), Sociological methodology (pp. 187–212). San Francisco, CA: Jossey-Bass. doi:10.2307/270923
  • Arnold, L. (1974). Stochastic differential equations. New York, NY: Wiley.
  • Bar-Shalom, Y., Li, X. R., & Kirubarajan, T. (2001). Estimation with applications to tracking and navigation: Theory algorithms and software. New York, NY: Wiley.
  • Beskos, A., Papaspiliopoulos, O., & Roberts, G. (2009). Monte Carlo maximum likelihood estimation for discretely observed diffusion processes. The Annals of Statistics, 37 (1), 223–245. doi:10.1214/07-AOS550
  • Boker, S. M., Deboeck, P. R., Edler, C., & Keel, P. K. (2010). Generalized local linear approximation of derivatives from time series. In S.-M. Chow, E. Ferrer, & F. Hsieh (Eds.), Statistical methods for modeling human dynamics: An interdisciplinary dialogue (pp. 161–178). New York, NY: Taylor & Francis.
  • Boker, S. M., & Graham, J. (1998). A dynamical systems analysis of adolescent substance abuse. Multivariate Behavioral Research, 33(4), 479–507. doi:10.1207/s15327906mbr3304_3
  • Boker, S. M., & McArdle, J. J. (1995). Statistical vector field analysis applied to mixed cross-sectional and longitudinal data. Experimental Aging Research, 21(1), 77–93. doi:10.1080/03610739508254269
  • Boker, S. M., Neale, M. C., & Klump, K. L. (2014). A differential equations model for the ovarian hormone cycle. In P. C. M. Molenaar, K. Newell, & R. Lerner (Eds.), Handbook of relational developmental systems: Emerging methods and concepts (pp. 369–391). New York, NY, USA: Guilford Press.
  • Boker, S. M., & Nesselroade, J. R. (2002). A method for modeling the intrinsic dynamics of intraindividual variability: Recovering the parameters of simulated oscillators in multi-wave panel data. Multivariate Behavioral Research, 37(1), 127–160. doi:10.1207/S15327906MBR3701_06
  • Bringmann, L. F., Hamaker, E. L., Vigo, D. E., Aubert, A., Borsboom, D., & Tuerlinckx, F. (2017). Changing dynamics: Time-varying autoregressive models using generalized modeling. Psychological Methods, 22(3), 409–425. doi:10.1037/met0000085
  • Brown, E. N., & Luithardt, H. (1999). Statistical model building and model criticism for human circadian data. Journal of Biological Rhythms, 14(6), 609–616. doi:10.1177/074873099129000975
  • Brown, R. (1828). A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philosophical Magazine, 4(21), 161–173. doi:10.1017/CBO9781107775473.016
  • Butner, J. E., Gagnon, K. T., Geuss, M. N., Lessard, D. A., & Story, T. N. (2015). Utilizing topology to generate and test theories of change. Psychological Methods, 20 (1), 1–25. doi:10.1037/a0037802
  • Chen, M., Chow, S.-M., & Hunter, M. (2018, in press). Stochastic differential equation models with time-varying parameters. In K. van Montford, H. Oud, & M. Voelkle (Eds.), Continuous-time modeling in the behavioral and related sciences. Berlin, Germany: Springer-Verlag.
  • Chow, S.-M., Bendezú, J. J., Cole, P. M., & Ram, N. (2016). A comparison of two- stage approaches for fitting nonlinear ordinary differential equation (ODE) models with mixed effects. Multivariate Behavioral Research, 51 (2–3), 154–184. doi:10.1080/00273171.2015.1123138
  • Chow, S.-M., Ferrer, E., & Nesselroade, J. R. (2007). An unscented Kalman filter approach to the estimation of nonlinear dynamical systems models. Multivariate Behavioral Research, 42 (2), 283–321. doi:10.1080/00273170701360423
  • Chow, S.-M., Hamaker, E. J., & Allaire, J. C. (2009). Using innovative outliers to detecting discrete shifts in dynamics in group-based state-space models. Multivariate Behavioral Research, 44(4), 465–496. doi:10.1080/00273170903103324
  • Chow, S.-M., Ho, M.-H. R., Hamaker, E. J., & Dolan, C. V. (2010). Equivalences and differences between structural equation and state-space modeling frameworks. Structural Equation Modeling, 17 (2), 303–332. doi:10.1080/10705511003661553
  • Chow, S.-M., Lu, Z., Sherwood, A., & Zhu, H. (2016). Fitting nonlinear ordinary differential equation models with random effects and unknown initial conditions using the Stochastic Approximation Expectation Maximization (SAEM) algorithm. Psychometrika, 81(1), 102–134. doi:10.1007/s11336-014-9431-z
  • Chow, S.-M., & Nesselroade, J. R. (2004). General slowing or decreased inhibition? Mathematical models of age differences in cognitive functioning. Journals of Gerontology Series B: Psychological Sciences & Social Sciences, 59B(3), 101–109. doi:10.1093/geronb/59.3.P101
  • Chow, S.-M., Ou, L., Ciptadi, A., Prince, E. B., You, D., Hunter, M. D., … Messinger, D. S. (2018). Representing sudden shifts in intensive dyadic interaction data using differential equation models with regime switching. Psychometrika, 83 (2), 476–510. doi:10.1007/s11336-018-9605-1
  • Chow, S.-M., Ram, N., Boker, S. M., Fujita, F., & Clore, G. (2005). Emotion as thermostat: Representing emotion regulation using a damped oscillator model. Emotion, 5 (2), 208–225. doi:10.1037/1528-3542.5.2.208
  • Chow, S.-M., Witkiewitz, K., Grasman, R. P. P. P., & Maisto, S. A. (2015). The cusp catastrophe model as cross-sectional and longitudinal mixture structural equation models. Psychological Methods, 20(1), 142–164. doi:10.1037/a0038962
  • Chow, S.-M., Zu, J., Shifren, K., & Zhang, G. (2011). Dynamic factor analysis models with time-varying parameters. Multivariate Behavioral Research, 46 (2), 303–339. doi:10.1080/00273171.2011.563697
  • Clair, S. (1999). A cusp catastrophe model for adolescent alcohol use: An empirical test. Nonlinear Dynamics, Psychology, and Life Sciences, 2 (3), 217–241. doi:10.1023/A:102237600
  • Cobb, L., & Zacks, S. (1985). Applications of catastrophe theory for statistical modelling in the biosciences. Journal of the American Statistical Association, 80 (392), 793–802. doi:10.1080/01621459.1985.10478184
  • Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (3rd ed.). Mahway, NJ: Lawrence Erlbaum. doi:10.4324/9780203774441
  • Cole, P. M., Bendezú, J. J., Ram, N., & Chow, S.-M. (2017). Dynamical systems modelling of early childhood self-regulation. Emotion, 17(4), 684–699. doi:10.1037/emo0000268
  • Coleman, J. S. (1968). The mathematical study of change. In H. M. Blalock, Jr., & A. Blalock (Eds.), Methodology in social research (pp. 428–478). New York, NY: McGraw-Hill.
  • Craven, P., & Wahba, G. (1978). Dec 01). Smoothing noisy data with spline functions. Numerische Mathematik, 31 (4), 377–403. doi:10.1007/BF01404567
  • De Boor, C. (1977). Package for calculating with B-splines. Siam Journal on Numerical Analysis, 14, 441–472. doi:10.1137/0714026
  • De Boor, C. (1978). A practical guide to splines. New York, NY: Springer-Verlag.
  • Deboeck, P. R. (2010). Estimating dynamical systms: Derivative estimation hints from Sir Ronald A. Fisher. Multivariate Behavioral Research, 45(4), 725–745. doi:10.1080/00273171.2010.498294
  • Deboeck, P. R., Montpetit, M. A., Bergeman, C. S., & Boker, S. M. (2009). Using derivative estimates to describe intraindividual variability at multiple time scales. Psychological Methods, 14 (4), 367–386. doi:10.1037/a0016622
  • Del Negro, M., & Otrok, C. (2008). Dynamic factor models with time-varying parameters: Measuring changes in international business cycles (Staff Reports No. 326). New York, NY: Federal Reserve Bank of New York, NY.
  • Dierckx, P. (1993). Curve and surface fitting with splines. New York, NY, USA: Oxford Science Publications.
  • Dolan, C. V., & Molenaar, P. C. M. (1991). A note on the calculation of latent trajectories in the quasi Markov simplex model by means of regression method and the discrete Kalman filter. Kwantitatieve Methoden, 38, 29–44.
  • Doucet, A., de Freitas, N., & Gordon, N. (Eds.). (2001). Sequential Monte Carlo methods in practice. New York, NY: Springer.
  • Driver, C., Oud, J., & Voelkle, M. (2017). Continuous time structural equation modelling with R package ctsem. Journal of Statistical Software, 77 (5), 1–35. doi:10.18637/jss.v077.i05
  • Durbin, J., & Koopman, S. J. (2001). Time series analysis by state space methods. New York, NY: Oxford University Press.
  • Eilers, P., & Marx, B. (1996). Flexible smoothing using B-splines and penalized likelihood (with comments and rejoinder). Statistical Science, 11 (2), 89–121. doi:10.1214/ss/1038425655
  • Ferrer, E., & McArdle, J. J. (2004). An experimental analysis of dynamic hypotheses about cognitive abilities and achievement from childhood to early adulthood. Developmental Psychology, 40 (6), 935–952. doi:10.1037/0012-1649.40.6.935
  • Flay, B. R. (1978). Catastrophe theory in social psychology: Some applications to attitudes and social behaviors. Behavioral Science, 23 (4), 335–350. doi:10.1002/bs.3830230404
  • Fox, J. (2015). Applied regression analysis and generalized linear models (3rd ed.). New York, NY: Sage.
  • Fox, J., & Weisberg, S. (2019). An r companion to applied regression (3rd ed.). Thousand Oaks, CA: Sage.
  • Freedle, R. (1977). Psychology, Thomian topologies, deviant logics, and human development. In N. Datan & H. W. Reese (Eds.), Life-span developmental psychology: Dialectical perspectives on experimental research (pp. 317–342). New York, NY: Academic Press.
  • Geweke, J. (1996). Variable selection and model comparison in regression. In J. O. Berger, J. M. Bernardo, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian statistics (5th ed., pp. 609–620). Oxford, UK: Oxford University Press.
  • Gilbert, P. D. (2015). Brief user’s guide: Dynamic systems estimation [Computer software manual]. Retrieved from http://cran.r-project.org/web/packages/dse/vignettes/Guide.pdf
  • Green, P. J., & Silverman, B. W. (1994). Nonparametric regression and generalized linear models: A roughness penalty approach. Boca Raton, FL: Chapman & Hall/CRC.
  • Harrell, F. E. J. (2001). Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. New York, NY: Springer.
  • Harvey, A. C. (2001). Forecasting, structural time series models and the Kalman filter. Cambridge, UK: Cambridge University Press.
  • Hastie, T., & Tibshirani, R. (1990). Generalized additive models. London, UK: Chapman & Hall.
  • Hastie, T., & Tibshirani, R. (1993). Varying-coefficient models. Journal of the Royal Statistical Society Series B, 55, 757–796.
  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Hoboken, New Jersey: Springer.
  • Hawkley, L. C., Burleson, M. H., Berntson, G. G., & Cacioppo, J. T. (2003). Loneliness in everyday life: Cardiovascular activity, psychosocial context and health behaviors. Journal of Personality and Social Psychology: Personality and Individual Differences, 85 (1), 105–120. doi:10.1037/0022-3514.85.1.105
  • Helske, J. (2017). KFAS: Exponential family state space models in R. Journal of Statistical Software, Articles, 78 (10), 1–39. doi:10.18637/jss.v078.i10
  • Helske, J., & Vihola, M. (2018). bssm: Bayesian inference of non-linear and non-Gaussian state space models in R [Computer software manual]. Retrieved from https://CRAN.R-project.org/package=bssm/vignettes/bssm.pdf (R package version 0.1.5)
  • Hu, L.-T., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3 (4), 424. doi:10.1037//1082-989X.3.4.424
  • Kaplan, D., & Glass, L. (1995). Understanding nonlinear dynamics. New York, NY: Springer-Verlag.
  • Kolata, G. (1977). Catastrophe theory: The emperor has no clothes. Science, 196(4287), 287–351. doi:10.1126/science.196.4287.287
  • Kou, S. C., Olding, B. P., Lysy, M., & Liu, J. S. (2012). A multiresolution method for parameter estimation of diffusion processes. Journal of the American Statistical Association, 107 (500), 1558–1574. doi:10.1080/01621459.2012.720899
  • Kulikov, G., & Kulikova, M. (2014, January). Accurate numerical implementation of the continuous-discrete extended Kalman filter. IEEE Transactions on Automatic Control, 59 (1), 273–279. doi:10.1109/TAC.2013.2272136
  • Kulikova, M. V., & Kulikov, G. Y. (2014). Adaptive ODE solvers in extended Kalman filtering algorithms. Journal of Computational and Applied Mathematics, 262, 205–216. doi:10.1016/j.cam.2013.09.064
  • Lawley, D. N., & Maxwell, M. A. (1973). Regression and factor analysis. Biometrika, 60 (2), 331–338. doi:10.1093/biomet/60.2.331
  • Li, R., Tan, X., Huang, L., Wagner, A. T., & Yang, J. (2014). TVEM (time-varying effect model) SAS macro suite users’ guide (version 2.1.1) [Computer software manual]. Retrieved from http://methodology.psu.edu
  • Lotka, A. J. (1925). Elements of physical biology. Baltimore: Williams and Wilkins.
  • Lu, Z.-H., Chow, S.-M., & Loken, E. (2017). A comparison of Bayesian and frequentist model selection methods for factor analysis models. Psychological Methods, 22(2), 361–381. doi:10.1037/met0000145
  • Lu, Z.-H., Chow, S.-M., Sherwood, A., & Zhu, H. (2015). Bayesian analysis of ambulatory cardiovascular dynamics with application to irregularly spaced sparse data. The Annals of Applied Statistics, 9(3), 1601–1620. doi:10.1214/15-AOAS846
  • Mbalawata, I. S., Särkkä, S., & Haario, H. (2013). Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering. Computational Statistics, 28 (3), 1195–1223. doi:10.1007/s00180-012-0352-y
  • McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). London, UK: Chapman and Hall.
  • McDonald, R. P., & Ho, M.-H. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7(1), 64–82. doi:10.1037/1082-989X.7.1.64
  • McKeown, G. J., & Sneddon, I. (2014). Modeling continuous self-report measures of perceived emotion using generalized additive mixed models. Psychological Methods, 19(1), 155–174. doi:10.1037/a0034282
  • Merrilees, C. E., Goeke-Morey, M., & Cummings, E. M. (2008). Do event-contingent diaries about marital conflict change marital interactions? Behaviour Research and Therapy, 46(2), 253–262. doi:10.1016/j.brat.2007.11.007
  • Molenaar, P. C. M. (1994). Dynamic latent variable models in developmental psychology. In A. von Eye & C. Clogg (Eds.), Latent variables analysis: Applications for developmental research (pp. 155–180). Thousand Oaks, CA: Sage Publications.
  • Molenaar, P. C. M. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific pyschology — this time forever. Measurement: Interdisciplinary Research and Perspectives, 2, 201–218. doi:10.1207/s15366359mea0204_1
  • Molenaar, P. C. M., Beltz, A. M., Gates, K. M., & Wilson, S. J. (2007). State space modeling of time-varying contemporaneous and lagged relations in connectivity maps. NeuroImage, 125, 791–802. Retrieved from http://dx.doi.org/10.1016/j.neuroimage.2015.10.088 doi:10.1016/j.neuroimage.2015.10.088
  • Molenaar, P. C. M., & Newell, K. M. (2003). Direct fit of a theoretical model of phase transition in oscillatory finger motions. British Journal of Mathematical and Statistical Psychology, 56(2), 199–214. doi:10.1348/000711003770480002
  • Morales, S., Ram, N., Buss, K. A., Cole, P. M., Helm, J. L., & Chow, S.-M. (2018). Age-related changes in the dynamics of fear-related regulation in early childhood. Developmental Science, 21 (5), e12633. doi:10.1111/desc.12633
  • Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., … Boker, S. M. (2016). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81(2), 535–549. doi:10.1007/s11336-014-9435-8
  • Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2016). Bayesian data analysis with the bivariate hierarchical Ornstein–Uhlenbeck process model. Multivariate Behavioral Research, 51(1), 106–119. doi:10.1080/00273171.2015.1110512
  • Ou, L. (2018). Estimation of mixed effects continuous-time models (Unpublished doctoral dissertation). Pennsylvania State University.
  • Ou, L., Hunter, M., & S.-M., Chow. (2018, in press). What’s for dynr: A package for linear and nonlinear dynamic modeling in R. The R Journal.
  • Oud, J. H. L., & Jansen, R. A. R. G. (2000). Continuous time state space modeling of panel data by means of SEM. Psychometrika, 65 (2), 199–215. doi:10.1007/BF02294374
  • Oud, J. H. L., van den Bercken, J. H., & Essers, R. J. (1990). Longitudinal factor score estimation using the Kalman filter. Applied Psychological Measurement, 14(4), 395–418. doi:10.1177/014662169001400406
  • Pagan, A. (1980). Some identification and estimation results for regression models with stochastically varying coefficients. Journal of Econometrics, 13(3), 341–363. doi:10.1016/0304-4076(80)90084-6
  • Petris, G. (2010). An R package for dynamic linear models. Journal of Statistical Software, 36 (12), 1–16. doi:10.18637/jss.v036.i12
  • Petris, G., & Petrone, S. (2011). State space models in R. Journal of Statistical Software, 41 (4), 1–25. doi:10.18637/jss.v041.i04
  • Poston, T., & Stewart, I. N. (1978). Catastrophe theory and its applications. London, UK: Pitman.
  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2002). Numerical recipes in C. Cambridge, UK: Cambridge University Press.
  • Ram, N., Shiyko, M., Lunkenheimer, E. S., Doerksen, S., & Conroy, D. (2014). Families as coordinated symbiotic systems: Making use of nonlinear dynamic models. In A. In Booth, S. McHale, & N. Landale (Eds.), Emerging methods in family research, 4th national symposium on family issues (pp. 19–37). Cham, Switzerland: Springer International Publishing.
  • Ramsay, J. O., Hooker, G., Campbell, D., & Cao, J. (2007). Parameter estimation for differential equations: A generalized smoothing approach (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69 (5), 741–796. doi:10.1111/j.1467-9868.2007.00610.x
  • Ramsay, J. O., & Silverman, B. W. (2005). Functional data analysis (2nd ed.). New York, NY: Springer-Verlag.
  • Savalei, V., & Kolenikov, S. (2008). Constrained versus unconstrained estimation in structural equation modeling. Psychological Methods, 13 (2), 150–170. doi:10.1037/1082-989x.13.2.150
  • Scheinerman, E. R. (1996). Invitation to dynamical systems. New Jersey: Prentice Hall.
  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464. doi:10.1214/aos/1176344136
  • Singer, H. (2002). Parameter estimation of nonlinear stochastic differential equations: Simulated maximum likelihood vs. extended Kalman filter and Itô-Taylor expansion. Journal of Computational and Graphical Statistics, 11(4), 972–995. doi:10.1198/106186002808
  • Singer, H. (2010). SEM modeling with singular moment matrices part I: ML-estimation of time series. The Journal of Mathematical Sociology, 34 (4), 301–320. doi:10.1080/0022250X.2010.532259
  • Singer, H. (2012). SEM modeling with singular moment matrices part II: ML-estimation of sampled stochastic differential equations. The Journal of Mathematical Sociology, 36 (1), 22–43. doi:10.1080/0022250X.2010.532259
  • Smith, L. B., & Thelen, E. (1993). A dynamic systems approach to development. Cambridge, MA: MIT Press.
  • Stock, J., & Watson, M. (2008). Forecasting in dynamic factor models subject to structural instability. In J. Castle & N. Shephard (Eds.), The methodology and practice of econometrics, a Festschrift in honour of Professor David F. Hendry. Oxford, UK: Oxford University Press.
  • Strahan, E. Y., & Conger, A. J. (1999). Social anxiety and social performance: Why don’t we see more catastrophes. Journal of Anxiety Disorders, 13 (4), 399–416. doi:10.1016/S0887-6185(99)00006-7
  • Strogatz, S. H. (1994). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Cambridge, MA: Westview.
  • Tan, X., Shiyko, M. P., Li, R., Li, Y., & Dierker, L. (2012). A time-varying effect model for intensive longitudinal data. Psychological Methods, 17 (1), 61–77. doi:10.1037/a0025814
  • Tarvainen, M. P., Georgiadis, S. D., Ranta-Aho, P. O., & Karjalainen, P. A. (2006). Time-varying analysis of heart rate variability signals with Kalman smoother algorithm. Physiological Measurement, 27(3), 225–239. doi:10.1088/0967-3334/27/3/002
  • Thatcher, R. W. (1998). A predator-prey model of human cerebral development. In K. M. Newell & P. C. M. Molenaar (Eds.), Applications of nonlinear dynamics to developmental process modeling (pp. 87–128). Mahwah, NJ: Lawrence Erlbaum.
  • Thom, R. (1993). Structural stability and morphogenesis: An outline of a general theory of models. Reading, MA: Addison-Wesley.
  • Thomas, E. A., & Martin, J. A. (1976). Analyses of parent-infant interaction. Psychological Review, 83 (2), 141–156. doi:10.1037/0033-295X.83.2.141
  • Trail, J. B., Collins, L. M., Rivera, D. E., Li, R., Piper, M. E., & Baker, T. B. (2014). Functional data analysis for dynamical system identification of behavioral processes. Psychological Methods, 19(2), 175–182. doi:10.1037/a0034035
  • Tuma, N. B., & Hannan, M. T. (1984). Social dynamics: Models and methods. New York, NY: Academic Press.
  • Uhlenbeck, G. E. (1980). Some notes on the relation between fluid mechanics and statistical physics. Annual Review of Fluid Mechanics, 12(1), 1–9. doi:10.1146/annurev.fl.12.010180.000245
  • (1994). Vallacher, R. R., & Nowak, A. (Eds.). Dynamical systems in social psychology. San Diego, CA: Academic Press.
  • van der Maas, H. L. J., Kolstein, R., & van der Pligt, J. (2003). Sudden transitions in attitudes. Sociological Methods & Research, 32, 125–152. doi:10.1177/0049124103253773
  • Voelkle, M. C., & Oud, J. H. L. (2013). Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes. British Journal of Mathematical and Statistical Psychology, 66(1), 103–126. doi:10.1111/j.2044-8317.2012.02043.x
  • Volterra, V. (1926). Variazioni e fluttuazioni del numero di individui in specie animali conviventi (variations and fluctuations in the number of individuals in cohabiting animal species). Mem. Acad. Lincei Roma, 2, 31–113. doi:10.1038/118558a0
  • Wagenmakers, E.-J., Molenaar, P. C. M., Grasman, R. P. P. P., Hartelman, P. A. I., & van der Maas, H. L. J. (2005). Transformation invariant stochastic catastrophe theory. Physica D, 211(3–4), 263–276. doi:10.1016/j.physd.2005.08.014
  • Weiss, A. A. (1985). The stability of the AR(1) process with an AR(1) coefficient. Journal of Time Series Analysis, 6(3), 181–186. doi:10.1111/j.1467-9892.1985.tb00408.x
  • West, M., & Harrison, J. (1997). Bayesian forecasting and dynamic models (2nd ed.). New York, NY: Springer-Verlag.
  • West, S. G., Taylor, A. B., & Wu, W. (2012). Model fit and model selection in structural equation modeling. In Handbook of structural equation modeling (pp. 209–231). New York, NY, USA: Guilford Press.
  • Witkiewitz, K., van der Maas, H. L. J., Hufford, M., & Marlatt, G. A. (2007). Nonnormality and divergence in post-treatment alcohol use: Reexamining the project MATCH data “another way”. Journal of Abnormal Psychology, 116(2), 378–394. doi:10.1037/0021-843X.116.2.378
  • Wood, F. S. (1973). The use of individual effects and residuals in fitting equations to data. Technometrics, 15 (4), 677–695. doi:10.1080/00401706.1973.10489104
  • Wood, S. (2018). Package ‘mgcv’ [Computer software manual]. Retrieved from https://cran.r-project.org/web/packages/mgcv/mgcv.pdf (R package version 1.8-23)
  • Wood, S. N. (2003). Thin-plate regression splines. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65 (1), 95–114. doi:10.1111/1467-9868.00374
  • Wood, S. N. (2006). Generalized additive models: An introduction with R. Boca Raton, FL: CRC Press.
  • Yerkes, R., & Dodson, J. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18(5), 459–482. doi:10.1002/cne.920180503
  • Zeeman, E. C. (1976). Catastrophe theory. Scientific American, 234 (4), 65–83. doi:10.1038/scientificamerican0476-65
  • Zill, D. G. (1993). A first course in differential equations (5th ed.). Boston: PWS-KENT Publishing Company.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.