211
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Reliability as Lindley Information

References

  • Aguirre-Urreta, M. I., Rönkkö, M., & McIntosh, C. N. (2019). A cautionary note on the finite sample behavior of maximal reliability. Psychological Methods, 24(2), 236–252. https://doi.org/10.1037/met0000176
  • Amari, S. (2001). Information geometry on hierarchy of probability distributions. IEEE Transactions on Information Theory, 47(5), 1701–1711. https://doi.org/10.1109/18.930911
  • Andersen, E. B. (1977). Sufficient statistics and latent trait models. Psychometrika, 42(1), 69–81. https://doi.org/10.1007/BF02293746
  • Anderson, T. W. (2003). An introduction to multivariate statistical analysis (3rd ed.) Wiley.
  • Balestro, V., Horvath, A. G., Martini, H., & Teixeira, R. (2017). Angles in normed spaces. Aequationes Mathematicae, 91(2), 201–236. https://doi.org/10.1007/s00010-016-0445-8
  • Bartholomew, D. J. (1984). The foundations of factor analysis. Biometrika, 71(2), 221–232. https://doi.org/10.1093/biomet/71.2.221
  • Bartholomew, D. J., Knott, M., & Moustaki, I. (2011). Latent variable models and factor analysis: A unified approach. Wiley.
  • Bell, C. B. (1962). Mutual information and maximal correlation as measures of dependence. The Annals of Mathematical Statistics, 33(2), 587–595. https://doi.org/10.1214/aoms/1177704583
  • Bentler, P. M. (2009). Alpha, dimension-free, and model-based internal consistency reliability. Psychometrika, 74(1), 137–143. https://doi.org/10.1007/s11336-008-9100-1
  • Berger, J. O., Bernardo, J. M., & Mendoza, M. (1989). On priors that maximize expected information. In J. P. Klein & J. C. Lee (Eds.), Recent developments in statistics and their applications. Freedom Academy Publishing.
  • Berger, J. O., Bernardo, J. M., & Sun, D. (2009). The formal definition of reference priors. Annals of Statistics, 37, 905–938.
  • Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference. Journal of the Royal Statistical Society: Series B, 41(2), 113–128. https://doi.org/10.1111/j.2517-6161.1979.tb01066.x
  • Bock, R., & Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. Psychometrika, 35(2), 179–197. https://doi.org/10.1007/BF02291262
  • Bollen, K. A. (1989). Structural equations with latent variables. John Wiley & Sons. https://doi.org/10.1002/9781118619179
  • Brigham, C. C. (1932). A study of errors. College Entrance Examination Board.
  • Brunel, N., & Nadal, J.-P. (1998). Mutual information, fisher information, and population coding. Neural Computation, 10(7), 1731–1757. https://doi.org/10.1162/089976698300017115
  • Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 1–32. https://doi.org/10.18637/jss.v076.i01
  • Chang, H.-H., & Stout, W. (1993). The asymptotic posterior normality of the latent trait in an IRT model. Psychometrika, 58(1), 37–52. https://doi.org/10.1007/BF02294469
  • Chen, Y., Liu, Y., & Xu, S. (2018). Mutual information reliability for latent class analysis. Applied Psychological Measurement, 42(6), 460–477.
  • Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the American Statistical Association, 90(432), 1313–1321. https://doi.org/10.2307/2291521
  • Clarke, B., & Barron, A. R. (1994). Jeffreys’ prior is asymptotically least favorable under entropy risk. Journal of Statistical Planning and Inference, 41(1), 37–60. https://doi.org/10.1016/0378-3758(94)90153-8
  • Clarke, B., & Yuan, A. (2010). Reference priors for empirical likelhood. In M.-H Chen, D. K. Dey, P. Muller, D. Sun, & K. Ye (Eds.), Frontiers of statistical decision making and bayesian analysis: In Honor of James O. Berger (pp. 56–68). Springer.
  • Cohen, J. (1982). Set correlation as a general multivariate data-analytic method. Multivariate Behavioral Research, 17(3), 301–341. https://doi.org/10.1207/s15327906mbr1703_2
  • Cohen, J., & Nee, J. C. M. (1984). Estimators for two measures of association for set correlation. Educational and Psychological Measurement, 44(4), 907–917. https://doi.org/10.1177/0013164484444012
  • Cover, T., & Thomas, J. (2006). Elements of information theory. Wiley.
  • Dembo, A., Cover, T. M., & Thomas, J. (1991). Information theoretic inequalities. IEEE Transactions on Information Theory, 37(6), 1501–1518. https://doi.org/10.1109/18.104312
  • Diener, E., & Emmons, R. A. (1984). The independence of positive and negative affect. Journal of Personality and Social Psychology, 47(5), 1105–1117.
  • Dolan, C. V., Wicherts, J. M., & Molenaar, P. C. M. (2004). A note on the relationship between the number of indicators and their reliability in detecting regression coefficients in latent regression analysis. Structural Equation Modeling: A Multidisciplinary Journal, 11(2), 210–216. https://doi.org/10.1207/s15328007sem1102_4
  • Ebrahimi, N., Jalali, N. Y., & Soofi, E. S. (2014). Comparison, utility, and partition of dependence under absolutely continuous and singular distributions. Journal of Multivariate Analysis, 131, 32–50. https://doi.org/10.1016/j.jmva.2014.06.014
  • Ebrahimi, N., Soofi, E. S., & Soyer, R. (2008). Multivariate maximum entropy identification, transformation, and dependence. Journal of Multivariate Analysis, 99(6), 1217–1231. https://doi.org/10.1016/j.jmva.2007.08.004
  • Ebrahimi, N., Soofi, E. S., & Soyer, R. (2010). On the sample information about parameter and prediction. Statistical Science, 25(3), 348–367. https://doi.org/10.1214/10-STS329
  • Eid, M., Geiser, C., Koch, T., & Heene, M. (2017). Anomalous results in G-factor models: Explanations and alternatives. Psychological Methods, 22(3), 541–562. https://doi.org/10.1037/met0000083
  • Fallat, S. M., & Johnson, C. R. (2000). Determinantal inequalities: Ancient history and recent advances. In D. V. Huynh, S. K. Jain, & S. R. López-Permouth (Eds.), Contemporary mathematics (Vol. 259, pp. 199–212). American Mathematical Society. https://doi.org/10.1090/conm/259/04095
  • Feder, M., & Merhav, N. (1994). Relations between entropy and error probability. IEEE Transactions on Information Theory, 40(1), 259–266. https://doi.org/10.1109/18.272494
  • Gill, N. P., Bos, E. H., Wit, E. C., & de Jonge, P. (2017). The association between positive and negative affect at the inter- and intra-individual level. Personality and Individual Differences, 105, 252–256. https://doi.org/10.1016/j.paid.2016.10.002
  • Gnambs, T., & Staufenbiel, T. (2018). The structure of the General Health Questionnaire (GHQ-12): Two metaanalytic factor analyses. Health Psychology Review, 12(2), 179–194. https://doi.org/10.1080/17437199.2018.1426484
  • Gnambs, T., Scharl, A., & Schroeders, U. (2018). The structure of the Rosenberg Self-Esteem Scale: A crosscultural meta-analysis. Zeitschrift für Psychologie, 226(1), 14–29. https://doi.org/10.1027/2151-2604/a000317
  • Golden, L. L., Brockett, P. L., & Zimmer, M. R. (1990). An information theoretic approach for identifying shared information and asymmetric relationships among variables. Multivariate Behavioral Research, 25(4), 479–502. https://doi.org/10.1207/s15327906mbr2504_5
  • Goldstein, M. D., & Strube, M. J. (1994). Independence revisited: The relation between positive and negative affect in a naturalistic setting. Personality and Social Psychology Bulletin, 20(1), 57–64. https://doi.org/10.1177/0146167294201005
  • Gomez, P., Ratcliff, R., & Perea, M. (2007). A model of the go/no-go task. Journal of Experimental Psychology. General, 136(3), 389–413. https://doi.org/10.1037/0096-3445.136.3.389
  • Good, I. J. (1968). Utility of a distribution. Nature, 219(5161), 1392–1392. https://doi.org/10.1038/2191392a0
  • Gosling, S. D., Rentfrow, P. J., & Swann, W. B. (2003). A very brief measure of the Big-Five personality domains. Journal of Research in Personality, 37(6), 504–528. https://doi.org/10.1016/S0092-6566(03)00046-1
  • Green, S. B., Yang, Y., Alt, M., Brinkley, S., Gray, S., Hogan, T., & Cowan, N. (2016). Use of internal consistency coefficients for estimating reliability of experimental task scores. Psychonomic Bulletin & Review, 23(3), 750–763. https://doi.org/10.3758/s13423-015-0968-3
  • Grunwald, P. D. (2007). The minimum description length principle. MIT Press.
  • Gunawan, H. (2018). n-Inner products, n-norms, and angles between two subspaces. In M. Ruzhansky, H. Dutta, & R. P. Agarwal (Eds.), Mathematical analysis and applications: Selected topics (pp. 493–515). Wiley.
  • Gunawan, H., Neswan, O., & Setya-Budhi, W. (2005). A formula for angles between subspaces of inner product spaces. Beiträge Zur Algebra Und Geometrie [Contributions to Algebra and Geometry], 46, 311–320.
  • Guntuboyina, A. (2011). Lower bounds for the minimax risk using f-divergences, and applications. IEEE Transactions on Information Theory, 57(4), 2386–2399. https://doi.org/10.1109/TIT.2011.2110791
  • Haberman, S. J., & Sinharay, S. (2010). Reporting of subscores using multidimensional item response theory. Psychometrika, 75(2), 209–227. https://doi.org/10.1007/s11336-010-9158-4
  • Harman, H. H. (1967). Modern factor analysis. University of Chicago.
  • Herzel, H., & Große, I. (1995). Measuring correlations in symbol sequences. Physica A: Statistical Mechanics and Its Applications, 216(4), 518–542. https://doi.org/10.1016/0378-4371(95)00104-F
  • Holland, P. W. (1990). On the sampling theory foundations of item response theory models. Psychometrika, 55(4), 577–601. https://doi.org/10.1007/BF02294609
  • Hooker, G. (2010). On separable tests, correlated priors, and paradoxical results in multidimensional item response theory. Psychometrika, 75(4), 694–707. https://doi.org/10.1007/s11336-010-9181-5
  • Hooker, G., Finkelman, M., & Schwartzman, A. (2009). Paradoxical results in multidimensional item response theory. Psychometrika, 74(3), 419–442. https://doi.org/10.1007/s11336-009-9111-6
  • Huang, W., & Zhang, K. (2018). Information-theoretic bounds and approximations in neural population coding. Neural Computation, 30(4), 885–944. https://doi.org/10.1162/neco_a_01056
  • Huang-Pollock, C. L., Karalunas, S. L., Tam, H., & Moore, A. N. (2012). Evaluating vigilance deficits in ADHD: A meta-analysis of CPT performance. Journal of Abnormal Psychology, 121(2), 360–371. https://doi.org/10.1037/a0027205
  • Inaba, T., & Shirahata, S. (1986). Measures of dependence in normal models and exponential models by information gain. Biometrika, 73(2), 345–352. https://doi.org/10.1093/biomet/73.2.345
  • Jackson, P. H., & Agunwamba, C. C. (1977). Lower bounds for the reliability of the total score on a test composed of non-homogeneous items: I: Algebraic lower bounds. Psychometrika, 42(4), 567–578. https://doi.org/10.1007/BF02295979
  • Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 186(1007), 453–461. https://doi.org/10.1098/rspa.1946.0056
  • Joe, H. (1989). Relative entropy measures of multivariate dependence. Journal of the American Statistical Association, 84(405), 157–164. https://doi.org/10.1080/01621459.1989.10478751
  • Johnson, M. S., & Sinharay, S. (2020). The reliability of the posterior probability of skill attainment in diagnostic classification models. Journal of Educational and Behavioral Statistics, 45(1), 5–31. https://doi.org/10.3102/1076998619864550
  • Jonas, K. G. (2021). Global information for multidimensional tests. Applied Psychological Measurement, 45(7–8), 494–517.
  • Jonas, K. G., & Markon, K. E. (2016). A descriptivist approach to trait conceptualization and inference. Psychological Review, 123(1), 90–96. https://doi.org/10.1037/a0039542
  • Jordan, P., & Spiess, M. (2012). Generalizations of Paradoxical Results in Multidimensional Item Response Theory. Psychometrika, 77(1), 127–152. https://doi.org/10.1007/s11336-011-9243-3
  • Jordan, P., & Spiess, M. (2018). A new explanation and proof of the paradoxical scoring results in multidimensional item response models. Psychometrika, 83(4), 831–846. https://doi.org/10.1007/s11336-017-9588-3
  • Joreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34, 183–202.
  • Joreskog, K. G., & Sorbom, D. (1982). Recent developments in structural equation modeling. Journal of Marketing Research, 19(4), 404. https://doi.org/10.2307/3151714
  • Kang, K., & Sompolinsky, H. (2001). Mutual information of population codes and distance measures in probability space. Physical Review Letters, 86(21), 4958–4961. https://doi.org/10.1103/PhysRevLett.86.4958
  • Kent, J. T. (1983). Information gain and a general measure of correlation. Biometrika, 70(1), 163–173. https://doi.org/10.2307/2335954
  • Kim, S. (2012). A note on the reliability coefficients for item response model-based ability estimates. Psychometrika, 77(1), 153–162. https://doi.org/10.1007/s11336-011-9238-0
  • Kinney, J. B., & Atwal, G. S. (2014). Equitability, mutual information, and the maximal information coefficient. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3354–3359. https://doi.org/10.1073/pnas.1309933111
  • Kinney, J. B., & Atwal, G. S. (2014a). Equitability, mutual information, and the maximal information coefficient. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3354–3359. https://doi.org/10.1073/pnas.1309933111
  • Kinney, J. B., & Atwal, G. S. (2014b). Parametric inference in the large data limit using maximally informative models. Neural Computation, 26(4), 637–653. https://doi.org/10.1162/NECO_a_00568
  • Knott, M. (2005). A measure of independence for a multivariate normal distribution and some connections with factor analysis. Journal of Multivariate Analysis, 96(2), 374–383. https://doi.org/10.1016/j.jmva.2004.10.013
  • Knott, M., & Bartholomew, D. J. (1993). Constructing measures with maximum reliability. Psychometrika, 58(2), 331–338. https://doi.org/10.1007/BF02294579
  • Knott, M., & Bartholomew, D. J. (1999). Latent variable models and factor analysis. Arnold.
  • Kostal, L. (2010). Information capacity in the weak-signal approximation. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 82(2), 026115. https://doi.org/10.1103/PhysRevE.82.026115
  • Kostal, L., & Lansky, P. (2010). Information transfer for small-amplitude signals. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 81(5), 050901. https://doi.org/10.1103/PhysRevE.81.050901
  • Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 22(1), 79–86. https://doi.org/10.1214/aoms/1177729694
  • Kvålseth, T. (2017). On normalized mutual information: Measure derivations and properties. Entropy, 19(11), 631. https://doi.org/10.3390/e19110631
  • Lazar, N. A. (2003). Bayesian empirical likelihood. Biometrika, 90(2), 319–326. https://www.jstor.org/stable/30042042 https://doi.org/10.1093/biomet/90.2.319
  • Lazar, N. A. (2021). A review of empirical likelihood. Annual Review of Statistics and Its Application, 8(1), 329–344. https://annurev-statistics-040720-024710 https://doi.org/10.1146/annurev-statistics-040720-024710
  • Lerche, V., & Voss, A. (2017). Retest reliability of the parameters of the Ratcliff diffusion model. Psychological Research, 81(3), 629–652. https://doi.org/10.1007/s00426-016-0770-5
  • Li, W. (1990). Mutual information functions versus correlation functions. Journal of Statistical Physics, 60(5–6), 823–837. https://doi.org/10.1007/BF01025996
  • Liese, F., & Vajda, I. (2006). On divergences and informations in statistics and information theory. IEEE Transactions on Information Theory, 52(10), 4394–4412. https://doi.org/10.1109/TIT.2006.881731
  • Lindley, D. V. (1956). On a measure of the information provided by an experiment. The Annals of Mathematical Statistics, 27(4), 986–1005. https://doi.org/10.1214/aoms/1177728069
  • Lindley, D. V. (1961). The use of prior probability distributions in statistical inference and decisions. In J. Neyman (Ed.), Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics (pp. 453–468). University of California Press.
  • Linfoot, E. H. (1957). An informational measure of correlation. Information and Control, 1(1), 85–89. https://doi.org/10.1016/S0019-9958(57)90116-X
  • Littman, R., & Takács, Á. Á. (2017). Do all inhibitions act alike? A study of go/no-go and stop-signal paradigms. PloS One, 12(10), e0186774. https://doi.org/10.1371/journal.pone.0186774
  • Liu, Y., & Wang, W. (2022). Semiparametric factor analysis for item-level response time data. Psychometrika, 87(2), 666–692. https://doi.org/10.1007/s11336-021-09832-8
  • Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Addison-Wesley.
  • Markon, K. E. (2013). Information utility: Quantifying the total psychometric information provided by a measure. Psychological Methods, 18(1), 15–35. https://doi.org/10.1037/a0030638
  • Markon, K. E. (2017, October 10). A generalized definition of reliability based on lindley information. https://doi.org/10.31234/osf.io/vgpfb
  • Mattingly, H. H., Transtrum, M. K., Abbott, M. C., & Machta, B. B. (2018). Maximizing the information learned from finite data selects a simple model. Proceedings of the National Academy of Sciences of the United States of America, 115(8), 1760–1765. https://doi.org/10.1073/pnas.1715306115
  • McDonald, R. P. (1979). The simultaneous estimation of factor loadings and scores. British Journal of Mathematical and Statistical Psychology, 32(2), 212–228. https://doi.org/10.1111/j.2044-8317.1979.tb00594.x
  • McDonald, R. P. (1985). Factor analysis and related methods. Lawrence Erlbaum Associates.
  • McGill, W. J. (1954). Multivariate information transmission. Psychometrika, 19(2), 97–116. https://doi.org/10.1007/BF02289159
  • Mellenbergh, G. J. (1996). Measurement precision in test score and item response models. Psychological Methods, 1(3), 293–299. https://doi.org/10.1037/1082-989X.1.3.293
  • Misiak, A. (1989). N-inner product spaces. Mathematische Nachrichten, 140(1), 299–319. https://doi.org/10.1002/mana.19891400121
  • Mroczek, D. K., & Kolarz, C. M. (1998). The effect of age on positive and negative affect: A developmental perspective on happiness. Journal of Personality and Social Psychology, 75(5), 1333–1349.
  • Myung, I. J., Balasubramanian, V., & Pitt, M. A. (2000). Counting probability distributions: Differential geometry and model selection. Proceedings of the National Academy of Sciences, 97(21), 11170–11175. https://doi.org/10.1073/pnas.170283897
  • Nalisnick, E., & Smyth, P. (2017, August). Learning approximately objective priors. Paper presented at the 33rd Conference on Uncertainty in Artificial Intelligence (UAI). Australia.
  • Nicewander, W. A. (2018). Conditional reliability coefficients for test scores. Psychological Methods, 23(2), 351–362. https://doi.org/10.1037/met0000132
  • Nirenberg, L. M. (1975). Low SNR digital communication over certain additive non-Gaussian channels. IEEE Transactions on Communications, 23(3), 332–341. https://doi.org/10.1109/TCOM.1975.1092799
  • Owen, A. B. (2001). Empirical likelihood. Chapman and Hall.
  • Palomar, D. P., & Verdu, S. (2006). Gradient of mutual information in linear vector Gaussian channels. IEEE Transactions on Information Theory, 52(1), 141–154. https://doi.org/10.1109/TIT.2005.860424
  • Palomar, D. P., & Verdu, S. (2007). Representation of mutual information via input estimates. IEEE Transactions on Information Theory, 53(2), 453–470. https://doi.org/10.1109/TIT.2006.889728
  • Paninski, L. (2003). Estimation of entropy and mutual information. Neural Computation, 15(6), 1191–1253. https://doi.org/10.1162/089976603321780272
  • Park, S., Serpedin, E., & Qaraqe, K. (2013). Gaussian assumption: The least favorable but the most useful. IEEE Signal Processing Magazine, 30(3), 183–186. https://doi.org/10.1109/MSP.2013.2238691
  • Parsons, S., Kruijt, A.-W., & Fox, E. (2019). Psychological science needs a standard practice of reporting the reliability of cognitive-behavioral measurements. Advances in Methods and Practices in Psychological Science, 2(4), 378–395. https://doi.org/10.1177/2515245919879695
  • Payaro, M., & Palomar, D. P. (2009). Hessian and concavity of mutual information, differential entropy, and entropy power in linear vector gaussian channels. IEEE Transactions on Information Theory, 55(8), 3613–3628. https://doi.org/10.1109/TIT.2009.2023749
  • Pinsker, M. S., Prelov, V. V., & Verdu, S. (1995). Sensitivity of channel capacity. IEEE Transactions on Information Theory, 41(6), 1877–1888. https://doi.org/10.1109/18.476313
  • Prasad, S. (2015). Bayesian error-based sequences of statistical information bounds. IEEE Transactions on Information Theory, 61(9), 5052–5062. https://doi.org/10.1109/TIT.2015.2457913
  • Prelov, V. V., & van der Meulen, E. C. (1993). An asymptotic expression for the information and capacity of a multidimensional channel with weak input signals. IEEE Transactions on Information Theory, 39(5), 1728–1735. https://doi.org/10.1109/18.259667
  • Raju, N. S., Price, L. R., Oshima, T. C., & Nering, M. L. (2007). Standardized conditional SEM: A Case for conditional reliability. Applied Psychological Measurement, 31(3), 169–180. https://doi.org/10.1177/0146621606291569
  • Raykov, T. (2004). Estimation of maximal reliability: A note on a covariance structure modelling approach. The British Journal of Mathematical and Statistical Psychology, 57(Pt 1), 21–27. https://doi.org/10.1348/000711004849295
  • Revelle, W. (2017). psych: Procedures for personality and psychological research. Northwestern University. https://CRAN.R-project.org/package=psych
  • Revelle, W., & Condon, D. M. (2019). Reliability from α to ω: A tutorial. Psychological Assessment, 31(12), 1395–1411. https://doi.org/10.1037/pas0000754
  • Revelle, W., Wilt, J., & Rosenthal, A. (2010). Individual differences in cognition: New methods for examining the personality-cognition link. In A. Gruszka, G. Matthews, & B. Szymura (Eds.), Handbook of individual differences in cognition: Attention, memory and executive control (pp. 27–49). Springer.
  • Rissanen, J. J. (1996). Fisher information and stochastic complexity. IEEE Transactions on Information Theory, 42(1), 40–47. https://doi.org/10.1109/18.481776
  • Rissanen, J. J. (2007). Information and complexity in statistical modeling. Springer.
  • Rockinger, M., & Jondeau, E. (2002). Entropy densities with an application to autoregressive conditional skewness and kurtosis. Journal of Econometrics, 106(1), 119–142. https://doi.org/10.1016/S0304-4076(01)00092-6
  • Rouder, J., Kumar, A., & Haaf, J. M. (2019, March 25). Why most studies of individual differences with inhibition tasks are bound to fail. https://doi.org/10.31234/osf.io/3cjr5
  • Rozeboom, W. W. (1965). Linear correlations between sets of variables. Psychometrika, 30(1), 57–71. https://doi.org/10.1007/BF02289747
  • Ryff, C. D., & Almeida, D. M. (2010). Midlife in the United States (MIDUS 2): Daily Stress Project, 2004-2009. ICPSR26841-v1. Inter-university Consortium for Political and Social Research. [distributor], https://doi.org/10.3886/ICPSR26841.v1
  • Schubert, A.-L., Frischkorn, G., Hagemann, D., & Voss, A. (2016). Trait characteristics of diffusion model parameters. Journal of Intelligence, 4(3), 7. https://doi.org/10.3390/jintelligence4030007
  • Shahar, N., Hauser, T. U., Moutoussis, M., Moran, R., Keramati, M., & Dolan, R. J. (2019). Improving the reliability of model-based decision-making estimates in the two-stage decision task with reaction times and drift-diffusion modeling. PLoS Computational Biology, 15(2), e1006803. https://doi.org/10.1371/journal.pcbi.1006803
  • Smith, R. (2015). A mutual information approach to calculating nonlinearity: Measuring nonlinearity with mutual information. Stat, 4(1), 291–303. https://doi.org/10.1002/sta4.96
  • Smith, T. W., Marsden, P., Hout, M., & Kim, J. (2015). General Social Surveys, 1972–2014 [machine-readable data file]. NORC at the University of Chicago [producer]. The Roper Center for Public Opinion Research, University of Connecticut.
  • Stam, A. J. (1959). Some inequalities satisfied by the quantities of information of Fisher and Shannon. Information and Control, 2, 101–112. https://doi.org/10.1016/S0019-9958(59)90348-1
  • Stein, M. S., & Nossek, J. A. (2017). A pessimistic approximation for the Fisher information measure. IEEE Transactions on Signal Processing, 65(2), 386–396. https://doi.org/10.1109/TSP.2016.2617824
  • Thissen, D. (2000). Reliability and measurement precision. In H. Wainer (Ed.), Computerized adaptive testing: A primer (2nd ed., pp. 159–184). Routledge.
  • Thomson, G. H. (1940). Weighting for battery reliability and prediction. British Journal of Psychology. General Section, 30(4), 357–366. https://doi.org/10.1111/j.2044-8295.1940.tb00968.x
  • Thurey, V. W. (2013). Angles and a classification of normed spaces. Annals of Functional Analysis, 1, 114–137.
  • Thurstone, L. L. (1933). The theory of multiple factors. Edwards Brothers.
  • Walsh, C., & Holmes, N. G. (2019, July 24–25). Assessing the assessment: Mutual information between response choices and factor scores [Paper presentation]. Paper Presented at Physics Education Research Conference, Provo, UT. https://doi.org/10.1119/perc.2019.pr.Walsh_C
  • Wang, C., Chang, H., & Boughton, K. A. (2011). Kullback-Liebler information and its applications in multi-dimensional adaptive testing. Psychometrika, 76(1), 13–39. https://doi.org/10.1007/s11336-010-9186-0
  • Watson, D. (1988). Intraindividual and interindividual analyses of positive and negative affect: Their relation to health complaints, perceived stress, and daily activities. Journal of Personality and Social Psychology, 54(6), 1020–1030. https://doi.org/10.1037/0022-3514.54.6.1020
  • Wei, X.-X., & Stocker, A. A. (2016). Mutual information, Fisher information, and efficient coding. Neural Computation, 28(2), 305–326. https://doi.org/10.1162/NECO_a_00804
  • White, C. N., Servant, M., & Logan, G. D. (2018). Testing the validity of conflict drift-diffusion models for use in estimating cognitive processes: A parameter-recovery study. Psychonomic Bulletin & Review, 25(1), 286–301. https://doi.org/10.3758/s13423-017-1271-2
  • Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: Hierarchical Bayesian estimation of the drift-diffusion model in Python. Frontiers in Neuroinformatics, 7, 14. https://doi.org/10.3389/fninf.2013.00014
  • Wilks, S. S. (1932). Certain generalizations in the analysis of variance. Biometrika, 24, 471–494. https://doi.org/10.1093/biomet/24.3-4.471
  • Wittmann, W. W. (1988). Multivariate reliability theory. Principles of symmetry and successful validation strategies. In J. R. Nesselroade & R. B. Cattell (Eds.), Handbook of multivariate experimental psychology (pp. 505–560).Plenum Press.
  • Woodhouse, B., & Jackson, P. H. (1977). Lower bounds for the reliability of the total score on a test composed of non-homogeneous items: II: A search procedure to locate the greatest lower bound. Psychometrika, 42(4), 579–591. https://doi.org/10.1007/BF02295980
  • Yang, Y., & Barron, A. (1999). Information-theoretic determination of minimax rates of convergence. Annals of Statistics, 27, 1564–1599. https://doi.org/10.1214/aos/1017939142
  • Yuan, Y. (2007). Empirical likelihood approach estimation of structural equation models [Master’s thesis, University of Missouri-Columbia].
  • Zhang, L., Liao, L., & Sun, L. (2011). Towards the global solution of the maximal correlation problem. Journal of Global Optimization, 49(1), 91–107. https://doi.org/10.1007/s10898-010-9536-6
  • Zheng, Y., Plomin, R., & von Stumm, S. (2016). Heritability of intraindividual mean and variability of positive and negative affect: Genetic analysis of daily affect ratings over a month. Psychological Science, 27(12), 1611–1619. https://doi.org/10.1177/0956797616669994
  • Zinbarg, R. E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach’s α, Revelle’s β, and McDonald’s ωH: Their relations with each other and two alternative conceptualizations of reliability. Psychometrika, 70(1), 123–133. https://doi.org/10.1007/s11336-003-0974-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.