270
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Bayesian Multivariate Logistic Regression for Superiority and Inferiority Decision-Making under Observable Treatment Heterogeneity

ORCID Icon, &

References

  • Brooks, S. P., & Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7(4), 434–455.
  • Chen, M.-H., & Ibrahim, J. G. (2000). Power prior distributions for regression models. Statistical Science, 15(1), 46–60. https://doi.org/10.1214/ss/1009212673
  • Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the American Statistical Association, 90(432), 1313–1321. https://doi.org/10.1080/01621459.1995.10476635
  • Chow, S.-C., Shao, J., Wang, H., & Lokhnygina, Y. (2017). Sample size calculations in clinical research (3rd ed.). Chapman and Hall/CRC.
  • Chuang-Stein, C., Stryszak, P., Dmitrienko, A., & Offen, W. (2006). Challenge of multiple co-primary endpoints: A new approach. Statistics in Medicine, 26(6), 1181–1192. https://doi.org/10.1002/sim.2604
  • Dahl, D. B., Scott, D., Roosen, C., Magnusson, A., & Swinton, J. (2019). xtable: Export Tables to LaTeX or HTML R package version 1.8-4.
  • Dai, B., Ding, S., & Wahba, G. (2013). Multivariate Bernoulli distribution. Bernoulli, 19(4), 1465–1483. https://doi.org/10.3150/12-BEJSP10
  • De Jong, V. M. T., Eijkemans, M. J. C., Calster, B., Timmerman, D., Moons, K. G. M., Steyerberg, E. W., & Smeden, M. (2019). Sample size considerations and predictive performance of multinomial logistic prediction models. Statistics in Medicine, 38(9), 1601–1619. https://doi.org/10.1002/sim.8063
  • European Medicine Agency. (2019). Guideline on the investigation of subgroups in confirmatory clinical trials.
  • Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika, 80(1), 27–38. https://doi.org/10.1093/biomet/80.1.27
  • Food and Drug Administration (2019). Enrichment strategies for clinical trials to support determination of effectiveness of human drugs and biological products: Guidance for industry. Center for Biologics Evaluation and Research (CBER).
  • Food and Drug Administration. (2016). Non-inferiority clinical trials to establish effectiveness: Guidance for industry.
  • Food and Drug Administration. (2017). Multiple endpoints in clinical trials guidance for industry.Center for Biologics Evaluation and Research (CBER).
  • Gelman, A., Jakulin, A., Pittau, M. G., & Su, Y.-S. (2008). A weakly informative default prior distribution for logistic and other regression models. The Annals of Applied Statistics, 2(4), 1360–1383. https://doi.org/10.1214/08-AOAS191
  • Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–472. https://doi.org/10.1214/ss/1177011136
  • Goldberger, J. J., & Buxton, A. E. (2013). Personalized medicine vs guideline-based medicine. JAMA, 309(24), 2559–2560. https://doi.org/10.1001/jama.2013.6629
  • Hamburg, M. A., & Collins, F. S. (2010). The path to personalized medicine. The New England Journal of Medicine, 363(4), 301–304. https://doi.org/10.1056/NEJMp1006304
  • Hoogland, J., IntHout, J., Belias, M., Rovers, M. M., Riley, R. D., E Harrell, F., Moons, K. G. M., Debray, T. P. A., & Reitsma, J. B. (2021). A tutorial on individualized treatment effect prediction from randomized trials with a binary endpoint. Statistics in Medicine, 40(26), 5961–5981. https://doi.org/10.1002/sim.9154
  • International Stroke Trial Collaborative Group. (1997). The international stroke trial (IST): A randomised trial of aspirin, subcutaneous heparin, both, or neither among 19, 435 patients with acute ischaemic stroke. The Lancet, 349(9065), 1569–1581.
  • Jones, H. E., Ohlssen, D. I., Neuenschwander, B., Racine, A., & Branson, M. (2011). Bayesian models for subgroup analysis in clinical trials. Clinical Trials (London, England), 8(2), 129–143. https://doi.org/10.1177/1740774510396933
  • Kavelaars, X., Mulder, J., & Kaptein, M. (2020). Decision-making with multiple correlated binary outcomes in clinical trials. Statistical Methods in Medical Research, 29(11), 3265–3277. https://doi.org/10.1177/0962280220922256
  • Kerman, J. (2011). Neutral noninformative and informative conjugate beta and gamma prior distributions. Electronic Journal of Statistics, 5, 1450–1470. https://doi.org/10.1214/11-EJS648
  • Lipkovich, I., Dmitrienko, A., & B, R. (2016). Tutorial in biostatistics: Data-driven subgroup identification and analysis in clinical trials. Statistics in Medicine, 36(1), 136–196. https://doi.org/10.1002/sim.7064
  • Makalic, E., Schmidt, D. (2016). High-dimensional Bayesian regularised regression with the bayesreg package. arXiv:1611.06649v3.
  • Malik, H. J., & Abraham, B. (1973). Multivariate logistic distributions. The Annals of Statistics, 1(3), 588–590. https://doi.org/10.1214/aos/1176342430
  • Marsman, M., & Wagenmakers, E.-J. (2016). Three insights from a Bayesian interpretation of the one-sided p value. Educational and Psychological Measurement, 77(3), 529–539. https://doi.org/10.1177/0013164416669201
  • Martin, A. D., Quinn, K. M., & Park, J. H. (2011). MCMCpack: Markov chain Monte Carlo in R. Journal of Statistical Software, 42(9), 22. https://doi.org/10.18637/jss.v042.i09
  • McLachlan, G. J., Lee, S. X., & Rathnayake, S. I. (2019). Finite mixture models. Annual Review of Statistics and Its Application, 6(1), 355–378. https://doi.org/10.1146/annurev-statistics-031017-100325
  • Microsoft, & Weston, S. (2020). doParallel: Foreach Parallel adaptor for the ’parallel’ package R package version 1.0.16.
  • Microsoft, & Weston, S. (2020). foreach: Provides foreach looping construct R package version 1.5.1.
  • Mulder, J., & Wagenmakers, E.-J. (2016). Editors’ introduction to the special issue “bayes factors for testing hypotheses in psychological research: Practical relevance and new developments”. Journal of Mathematical Psychology, 72, 1–5. https://doi.org/10.1016/j.jmp.2016.01.002
  • Murray, T. A., Thall, P. F., & Yuan, Y. (2016). Utility-based designs for randomized comparative trials with categorical outcomes. Statistics in Medicine, 35(24), 4285–4305. https://doi.org/10.1002/sim.6989
  • Nemes, S., Jonasson, J. M., Genell, A., & Steineck, G. (2009). Bias in odds ratios by logistic regression modelling and sample size. BMC Medical Research Methodology, 9(1), 56. https://doi.org/10.1186/1471-2288-9-56
  • O’Brien, P. C. (1984). Procedures for comparing samples with multiple endpoints. Biometrics, 40(4), 1079–1087.
  • O’Brien, S. M., & Dunson, D. B. (2004). Bayesian multivariate logistic regression. Biometrics, 60(3), 739–746. https://doi.org/10.1111/j.0006-341X.2004.00224.x
  • Olkin, I., & Trikalinos, T. A. (2015). Constructions for a bivariate beta distribution. Statistics & Probability Letters, 96, 54–60. https://doi.org/10.1016/j.spl.2014.09.013
  • Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). Coda: Convergence diagnosis and output analysis for MCMC. R News, 6(1), 7–11.
  • Pocock, S. J. (1997). Clinical trials with multiple outcomes: A statistical perspective on their design, analysis, and interpretation. Controlled Clinical Trials, 18(6), 530–545. https://doi.org/10.1016/s0197-2456(97)00008-1
  • Pocock, S. J., Geller, N. L., & Tsiatis, A. A. (1987). The analysis of multiple endpoints in clinical trials. Biometrics, 43(3), 487. https://doi.org/10.2307/2531989
  • Polson, N. G., Scott, J. G., & Windle, J. (2013). Bayesian inference for logistic models using Pólya–Gamma latent variables. Journal of the American Statistical Association, 108(504), 1339–1349. https://doi.org/10.1080/01621459.2013.829001
  • Prentice, R. L. (1997). Discussion: On the role and analysis of secondary outcomes in clinical trials. Controlled Clinical Trials, 18(6), 561–567. https://doi.org/10.1016/S0197-2456(96)00105-5
  • R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
  • Ristl, R., Urach, S., Rosenkranz, G., & Posch, M. (2019). Methods for the analysis of multiple endpoints in small populations: A review. Journal of Biopharmaceutical Statistics, 29(1), 1–29. https://doi.org/10.1080/10543406.2018.1489402
  • Rossi, P. E., Allenby, G. M., & McCulloch, R. (2005). Bayesian statistics and marketing. John Wiley & Sons.
  • Sandercock, P. A., Niewada, M., & Członkowska, A. (2011). The international stroke trial database. Trials, 12, 101. 1). https://doi.org/10.1186/1745-6215-12-101
  • Senn, S., & Bretz, F. (2007). Power and sample size when multiple endpoints are considered. Pharmaceutical Statistics, 6(3), 161–170. https://doi.org/10.1002/pst.301
  • Simon, R. (2010). Clinical trials for predictive medicine: New challenges and paradigms. Clinical Trials (London, England), 7(5), 516–524. https://doi.org/10.1177/1740774510366454
  • Sozu, T., Sugimoto, T., & Hamasaki, T. (2010). Sample size determination in clinical trials with multiple co-primary binary endpoints. Statistics in Medicine, 29(21), 2169–2179. https://doi.org/10.1002/sim.3972
  • Sozu, T., Sugimoto, T., & Hamasaki, T. (2016). Reducing unnecessary measurements in clinical trials with multiple primary endpoints. Journal of Biopharmaceutical Statistics, 26(4), 631–643. https://doi.org/10.1080/10543406.2015.1052497
  • Sullivan, S. G., & Greenland, S. (2012). Bayesian regression in SAS software. International Journal of Epidemiology, 42(1), 308–317. https://doi.org/10.1093/ije/dys213
  • Tang, D.-I., Geller, N. L., & Pocock, S. J. (1993). On the design and analysis of randomized clinical trials with multiple endpoints. Biometrics, 49(1), 23–30. https://doi.org/10.2307/2532599
  • Thall, P. F. (2020). Bayesian cancer clinical trial designs with subgroup-specific decisions. Contemporary Clinical Trials, 90, 105860. https://doi.org/10.1016/j.cct.2019.105860
  • Tuyl, F., Gerlach, R., & Mengersen, K. (2008). A comparison of Bayes-laplace, Jeffreys, and other priors: The case of zero events. The American Statistician, 62(1), 40–44. https://doi.org/10.1198/000313008X267839
  • Van Ravenzwaaij, D., Monden, R., Tendeiro, J. N., & Ioannidis, J. P. A. (2019). Bayes factors for superiority, non-inferiority, and equivalence designs. BMC Medical Research Methodology, 19(1), 71. https://doi.org/10.1186/s12874-019-0699-7
  • Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S. 4th ed. Springer. ISBN 0-387-95457-0.
  • Wang, M., Spiegelman, D., Kuchiba, A., Lochhead, P., Kim, S., Chan, A. T., Poole, E. M., Tamimi, R., Tworoger, S. S., Giovannucci, E., Rosner, B., & Ogino, S. (2015). Statistical methods for studying disease subtype heterogeneity. Statistics in Medicine, 35(5), 782–800. https://doi.org/10.1002/sim.6793
  • Xiong, C., Yu, K., Gao, F., Yan, Y., & Zhang, Z. (2005). Power and sample size for clinical trials when efficacy is required in multiple endpoints: Application to an alzheimer’s treatment trial. Clinical Trials (London, England), 2(5), 387–393. https://doi.org/10.1191/1740774505cn112oa
  • Yang, S., Li, F., Thomas, L. E., & Li, F. (2021). Covariate adjustment in subgroup analyses of randomized clinical trials: A propensity score approach. Clinical Trials (London, England), 18(5), 570–581. https://doi.org/10.1177/17407745211028588
  • Zhao, Y., Grambsch, P. M., & Neaton, J. D. (2007). A decision rule for sequential monitoring of clinical trials with a primary and supportive outcome. Clinical Trials (London, England), 4(2), 140–153. https://doi.org/10.1177/1740774507076936