567
Views
26
CrossRef citations to date
0
Altmetric
Biochemistry/ Physiology

Production of toxic metabolites by two strains of Lasiodiplodia theobromae, isolated from a coconut tree and a human patient

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 642-653 | Received 08 Jan 2018, Accepted 16 May 2018, Published online: 31 Jul 2018

LITERATURE CITED

  • Abou-Mansour E, Débieux JL, Ramírez-Suero M, Bénard-Gellon M, Magnin-Robert M, Spagnolo A, Chong J, Farine S, Bertsch C, L’Haridon F, Serrano M, Fontaine F, Rego C, Larignon P. 2015. Phytotoxic metabolites from Neofusicoccum parvum, a pathogen of Botryosphaeria dieback of grapevine. Phytochemistry 115:207–215.
  • Aldridge DC, Galt S, Giles D, Turner WB. 1971. Metabolites of Lasiodiplodia theobromae. Journal of the Chemical Society C: Organic Chemistry 1623–1627.
  • AMDIS NET. AMDIS. [cited 01 May 2018]. Available from: http://www.amdis.net/
  • Alves da Cunha MA, Turmina JA, Ivanov RC, Barroso RR, Marques PT, Fonseca EAI, Fortes ZB, Dekker RFH, Khaper N, Barbosa AM. 2012. Lasiodiplodan, an exocellular (1→6)-β-D-glucan from Lasiodiplodia theobromae MMPI: production on glucose, fermentation kinetics, rheology and anti-proliferative activity. Journal of Industrial Microbiology and Biotechnology 39:1179–1188.
  • Ammerman NC, Beier-Sexton M, Azad AF. 2008. Growth and maintenance of vero cell lines. Current Protocols in Microbiology S11:A.4E.1–A.4E.7.
  • Andolfi A, Maddau L, Cimmino A, Linaldeddu BT, Basso S, Deidda A, Serra S, Evidente A. 2014. Lasiojasmonates A–C, three jasmonic acid esters produced by Lasiodiplodia sp., a grapevine pathogen. Phytochemistry 103:145–153.
  • Andolfi A, Mugnai L, Luque J, Surico G, Cimmino A, Evidente A. 2011. Phytotoxins produced by fungi associated with grapevine trunk diseases. Toxins (Basel) 3:1569–605.
  • Badenoch P, Wetherall B, Woolley M, Coster D. 2008. Newer emerging pathogens of ocular non-sporulating molds (NSM) identified by polymerase chain reaction (PCR)-based DNA sequencing technique targeting internal transcribed spacer (ITS) region. Current Eye Research 33: 903–904; author reply 905–906.
  • Cabras A, Mannoni MA, Serra S, Andolfi A, Fiore M, Evidente A. 2006. Occurrence, isolation and biological activity of phytotoxic metabolites produced in vitro by Sphaeropsis sapinea, pathogenic fungus of Pinus radiata. European Journal of Plant Pathology 115:187–193.
  • Chanclud E, Morel JB. 2016. Plant hormones: a fungal point of view. Molecular plant pathology 17:1289–1297.
  • Chen S, Chen D, Cai R, Cui H, Long Y, Lu Y, Li C, She Z. 2016. Cytotoxic and antibacterial preussomerins from the mangrove endophytic fungus Lasiodiplodia theobromae ZJ-HQ1. Journal of Natural Products 79:2397–2402.
  • Cimmino A, Andolfi A, Abouzeid M, Evidente A. 2013. Polyphenols as fungal phytotoxins, seed germination stimulants and phytoalexins. Phytochemistry Reviews 12:653–672.
  • Cimmino A, Cinelli T, Masi M, Reveglia P, da Silva MA, Mugnai L, Michereff SJ, Surico G, Evidente A. 2017. Phytotoxic lipophilic metabolites produced by grapevine strains of Lasiodiplodia species in Brazil. Journal of Agricultural and Food Chemistry 65:1102–1107.
  • De Lucca AJ. 2007. Harmful fungi in both agriculture and medicine. Revista Iberoamericana de Micologia 24:3–13.
  • Dhandhukia PC, Thakkar VR. 2007. Standardization of growth and fermentation criteria of Lasiodiplodia theobromae for production of jasmonic acid. African Journal of Biotechnology 6:707–712.
  • Duarte AS, Cavaleiro E, Pereira C, Merino S, Esteves AC, Duarte EP, Tomás JM, Correia AC. 2015. Aeromonas piscicola AH-3 expresses an extracellular collagenase with cytotoxic properties. Letters in Applied Microbiology 60:288–297.
  • Dulbecco R, Freeman G. 1959. Plaque production by the polyoma virus. Virology 8:396–397.
  • Eastburn DM, McElrone AJ, Bilgin DD. 2011. Influence of atmospheric and climatic change on plant-pathogen interactions. Plant Pathology 60:54–69.
  • Eng F, Haroth S, Feussner K, Meldau D, Rekhter D, Ischebeck T, Brodhun F, Feussner I. 2016. Optimized jasmonic acid production by Lasiodiplodia theobromae reveals formation of valuable plant secondary metabolites. PLoS ONE 11: e0167627.
  • Esteves AC, Saraiva M, Correia A, Alves A. 2014. Botryosphaeriales fungi produce extracellular enzymes with biotechnological potential. Canadian Journal of Microbiology 60:332–342.
  • Evidente A, Andolfi A, Cimmino A. 2011. Relationships between the stereochemistry and biological activity of fungal phytotoxins. Chirality 23:674–693.
  • Félix C, Duarte AS, Vitorino R, Guerreiro ACL, Domingues P, Correia ACM, Alves A, Esteves AC. 2016. Temperature modulates the secretome of the phytopathogenic fungus Lasiodiplodia theobromae. Frontiers in Plant Science 7:1096.
  • Félix C, Liborio S, Nunes M, Felix R, Duarte AS, Alves A, Esteves AC. 2018. Lasiodiplodia theobromae as a Producer of Biotechnologically Relevant Enzymes. International Journal of Molecular Science 19:29. doi: 10.3390/ijms19020029.
  • Fernandes I, Alves A, Correia A, Devreese B, Esteves AC. 2014. Secretome analysis identifies potential virulence factors of Diplodia corticola, a fungal pathogen involved in cork oak (Quercus suber) decline. Fungal Biology 118:516–523.
  • Forzato C, Furlan G, Nitti P, Pitacco G, Marchesan D, Coriani S, Valentin E. 2005. A combined experimental and computational strategy in the assignment of absolute configurations of 4-methyl-5-oxo-tetrahydrofuran-3-carboxylic acids and their esters. Tetrahedron Asymmetry 16:3011–3023.
  • Galant A, Koester RP, Ainsworth EA, Hicks LM, Jez JM. 2012. From climate change to molecular response: redox proteomics of ozone-induced responses in soybean. New Phytologist 194:220–229.
  • Gallana M, Ryser-Degiorgis M, Wahli T, Segner H. 2013. Climate change and infectious diseases of wildlife: altered interactions between pathogens, vectors and hosts. Current Zoology 59:427–437.
  • Gauthier GM, Keller NP. 2013. Crossover fungal pathogens: the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans. Fungal Genetics and Biology 61:146–157.
  • González-Fernández R, Valero-Galván J, Gómez-Gálvez FJ, Jorrín-Novo JV. 2015. Unraveling the in vitro secretome of the phytopathogen Botrytis cinerea to understand the interaction with its hosts. Frontiers in Plant Science 6:839.
  • Guida M, Salvatore MM, Salvatore F. 2015. A strategy for GC/MS quantification of polar compounds via their silylated surrogates: silylation and quantification of biological amino acids. Journal of Analytical & Bioanalytical Techniques 6:263–279.
  • Hamasaki T, Nagayama K, Hatsuda Y. 1976. A new metabolite, l-alanyl-l-tryptophan anhydride from Aspergillus chevalieri. Agricultural and Biological Chemistry 40:203–205.
  • Hummel J, Strehmel N, Selbig J, Walther D, Kopka J. 2010. Decision tree supported substructure prediction of metabolites from GC-MS profiles. Metabolomics 6:322–333.
  • Husain A, Ahmad A, Agrawal PK. 1993. (−)-jasmonic acid, a phytotoxic substance from Botryodiplodia theobromae: characterization by nmr spectroscopic methods. Journal of Natural Products 56:2008–2011.
  • Jacobson ES. 2000. Pathogenic roles for fungal melanins. Clinical Microbiology Reviews 13:708–717.
  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL. 2004. Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiology 136:4159–4168.
  • Kindo AJ, Pramod C, Anita S, Mohanty S. 2010. Maxillary sinusitis caused by Lasiodiplodia theobromae. Indian Journal of Medical Microbiology 28:167–169.
  • King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM. 2011. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnology for Biofuels 4:4.
  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M. 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259:698–709.
  • Matsumoto M, Nago H. 1994. (R)-2-octeno-δ-lactone and other volatiles produced by Lasiodiplodia theobromae. Bioscience, Biotechnology and Biochemistry 58:1262–1266.
  • Mazzeo G, Cimmino A, Andolfi A, Evidente A, Superchi S. 2014. Computational ECD spectrum simulation of the phytotoxin scytalone: importance of solvent effects on conformer populations. Chirality 26:502–508.
  • NIST 2018. NIST Standard Reference Data. [cited 01 May 2018]. Available from: http://www.nist.gov/srd/nist1a.cfm
  • Pandi M, Manikandan R, Muthumary J. 2010. Anticancer activity of fungal taxol derived from Botryodiplodia theobromae Pat., an endophytic fungus, against 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary gland carcinogenesis in Sprague-Dawley rats. Biomedicine and Pharmacotherapy 64:48–53.
  • Phillips AJL, Alves A, Abdollahzadeh J, Slippers B, Wingfield MJ, Groenewald JZ, Crous PW. 2013. The Botryosphaeriaceae: genera and species known from culture. Studies in Mycology 76:51–167.
  • Piñeiro C, Cañas B, Carrera M. 2010. The role of proteomics in the study of the influence of climate change on seafood products. Food Research International 43:1791–1802.
  • Qian CD, Fu YH, Jiang FS, Xu ZH, Cheng DQ, Ding B, Gao CX, Ding ZS. 2014. Lasiodiplodia sp. ME4-2, an endophytic fungus from the floral parts of Viscum coloratum, produces indole-3-carboxylic acid and other aromatic metabolites. BMC Microbiology 14:297.
  • Ramirez-Suero M, Benard-Gellon M, Chong J, Laloue H, Stempien E, Abou-Mansour E, Fontaine F, Larignon P, Mazet-Kieffer F, Farine S, Bertsch C. 2014. Extracellular compounds produced by fungi associated with Botryosphaeria dieback induce differential defence gene expression patterns and necrosis in Vitis vinifera cv. Chardonnay cells. Protoplasma 251:1417–1426.
  • Rodríguez-Gálvez E, Maldonado E, Alves A. 2015. Identification and pathogenicity of Lasiodiplodia theobromae causing dieback of table grapes in Peru. European Journal of Plant Pathology 141:477–489.
  • Rukachaisirikul V, Arunpanichlert J, Sukpondma Y, Phongpaichit S, Sakayaroj J. 2009. Metabolites from the endophytic fungi Botryosphaeria rhodina PSU-M35 and PSU-M114. Tetrahedron 65:10590–10595.
  • Saha S, Sengupta J, Banerjee D, Khetan A. 2012. Lasiodiplodia theobromae keratitis: a case report and review of literature. Mycopathologia 174:335–339.
  • Saha S, Sengupta J, Banerjee D, Khetan A. 2013. Lasiodiplodia theobromae keratitis: a rare fungi from eastern India. 3: 82–83.
  • Stein SE. 1999. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. Journal of the American Society for Mass Spectrometry 10:770–781.
  • Summerbell RC, Krajden S, Levine R, Fuksa M. 2004. Subcutaneous phaeohyphomycosis caused by Lasiodiplodia theobromae and successfully treated surgically. Medical Mycology 42:543–547.
  • Tsukada K, Takahashi K, Nabeta K. 2010. Biosynthesis of jasmonic acid in a plant pathogenic fungus, Lasiodiplodia theobromae. Phytochemistry 71:2019–2023.
  • Woo PCY, Lau SKP, Ngan AHY, Tse H, Tung ETK, Yuen KY. 2008. Lasiodiplodia theobromae pneumonia in a liver transplant recipient. Journal of Clinical Microbiology 46:380–384.
  • Yang Q, Asai M, Matsuura H, Yoshihara T. 2000. Potato micro-tuber inducing hydroxylasiodiplodins from Lasiodiplodia theobromae. Phytochemistry 54:489–494.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.