1,210
Views
2
CrossRef citations to date
0
Altmetric
Biochemistry & Physiology

Differential carbohydrate-active enzymes and secondary metabolite production by the grapevine trunk pathogen Neofusicoccum parvum Bt-67 grown on host and non-host biomass

, , , , , , & ORCID Icon show all
Pages 579-601 | Received 02 Dec 2022, Accepted 17 May 2023, Published online: 26 Jun 2023

LITERATURE CITED

  • Abou-Mansour E, Débieux J-L, Ramírez-Suero M, Bénard-Gellon M, Magnin-Robert M, Spagnolo A, Chong J, Farine S, Bertsch C, L’Haridon F, et al. 2015. Phytotoxic metabolites from Neofusicoccum parvum, a pathogen of Botryosphaeria dieback of grapevine. Phytochemistry. 115:207–15. doi:10.1016/j.phytochem.2015.01.012.
  • Adapa PK, Karunakaran C, Tabil LG, Schoenau GJ. 2009. Potential applications of infrared and Raman spectromicroscopy for agricultural biomass. Agric Eng Int: CIGR J. 11:1081.
  • Adav SS, Chao LT, Sze SK. 2012. Quantitative secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degradation. Mol Cell Proteomics. 11(7):M111.012419. doi:10.1074/mcp.M111.012419.
  • Álvarez Á, Yáñez J, Neira Y, Castillo-Felices R, Hinrichsen P. 2020. Simple distinction of grapevine (Vitis vinifera L.) genotypes by direct ATR-FTIR. Food Chem. 328:127164. doi:10.1016/j.foodchem.2020.127164.
  • Andolfi A, Mugnai L, Luque J, Surico G, Cimmino A, Evidente A. 2011. Phytotoxins produced by fungi associated with grapevine trunk diseases. Toxins. 3(12):1569–605. doi:10.3390/toxins3121569.
  • Andrews S. 2010. A quality control tool for high throughput sequence data. Ver. 0.11.9. [FastQC]. Cambridge (UK): Babraham Institute.
  • Apel-Birkhold PC, Walton JD. 1996. Cloning, disruption, and expression of two endo-beta 1, 4-xylanase genes, XYL2 and XYL3, from Cochliobolus carbonum. Appl Environ Microbiol. 62(11):4129–35. doi:10.1128/aem.62.11.4129-4135.1996.
  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. 2000. Gene Ontology: tool for the unification of biology. Nat Genet. 25(1):25–29. doi:10.1038/75556.
  • Ashihara H, Ludwig IA, Katahira R, Yokota T, Fujimura T, Crozier A. 2015. Trigonelline and related nicotinic acid metabolites: occurrence, biosynthesis, taxonomic considerations, and their roles in planta and in human health. Phytochem Rev. 14(5):765–98. doi:10.1007/s11101-014-9375-z.
  • Avalos J, Carmen Limón M. 2015. Biological roles of fungal carotenoids. Curr Genet. 61(3):309–24. doi:10.1007/s00294-014-0454-x.
  • Bach CE, Warnock DD, Van Horn DJ, Weintraub MN, Sinsabaugh RL, Allison SD, German DP. 2013. Measuring phenol oxidase and peroxidase activities with pyrogallol, l-DOPA, and ABTS: effect of assay conditions and soil type. Soil Biol Biochem. 67:183–91. doi:10.1016/j.soilbio.2013.08.022.
  • Banerjee D, Martin N, Nandi S, Shukla S, Dominguez A, Mukhopadhyay G, Prasad R. 2007. A genome-wide steroid response study of the major human fungal pathogen Candida albicans. Mycopathologia. 164(1):1–17. doi:10.1007/s11046-007-9025-8.
  • Banerjee D, Pillai B, Karnani N, Mukhopadhyay G, Prasad R. 2004. Genome-wide expression profile of steroid response in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 317(2):406–13. doi:10.1016/j.bbrc.2004.03.053.
  • Belair M, Restrepo-Leal JD, Praz C, Fontaine F, Rémond C, Fernandez O, Besaury L. 2023. Botryosphaeriaceae gene machinery: correlation between diversity and virulence. Fungal Biol. 127(5):1010–31. doi:10.1016/j.funbio.2023.03.004.
  • Bertsch C, Ramírez-Suero M, Magnin-Robert M, Larignon P, Chong J, Abou-Mansour E, Spagnolo A, Clément C, Fontaine F. 2013. Grapevine trunk diseases: complex and still poorly understood. Plant Pathol. 62:243–65.
  • Blanco-Ulate B, Rolshausen P, Cantu D. 2013. Draft genome sequence of Neofusicoccum parvum isolate UCR-NP2, a fungal vascular pathogen associated with grapevine cankers. Genome Announc. 1(3):e00339–13. doi:10.1128/genomeA.00339-13.
  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. 2004. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J. 382:769–81.
  • Brakhage AA. 2013. Regulation of fungal secondary metabolism. Nat Rev Microbiol. 11:21–32.
  • Brito N, Espino JJ, González C. 2006. The endo-β-1,4-Xylanase Xyn11A is required for virulence in Botrytis cinerea. Mol Plant Microbe Interact. 19(1):25–32. doi:10.1094/MPMI-19-0025.
  • Buckel I, Andernach L, Schüffler A, Piepenbring M, Opatz T, Thines E. 2017. Phytotoxic dioxolanones are potential virulence factors in the infection process of Guignardia bidwellii. Sci Rep. 7(1):8926. doi:10.1038/s41598-017-09157-6.
  • Cane DE, Levin RH. 1976. Application of carbon-13 magnetic resonance to isoprenoid biosynthesis. II. Ovalicin and the use of doubly labeled mevalonate. J Am Chem Soc. 98(5):1183–88. doi:10.1021/ja00421a022.
  • Cassarini M, Besaury L, Rémond C. 2021. Valorisation of wheat bran to produce natural pigments using selected microorganisms. J Biotechnol. 339:81–92. doi:10.1016/j.jbiotec.2021.08.003.
  • Cassarini M, Crônier D, Besaury L, Rémond C. 2022. Protein-rich agro-industrial co-products are key substrates for growth of Chromobacterium vaccinii and its violacein bioproduction. Waste Biomass Valori. 13(11):4459–68. doi:10.1007/s12649-022-01798-7.
  • Chang S, Puryear J, Cairney J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep. 11(2):113–16. doi:10.1007/BF02670468.
  • Claverie M, Notaro M, Fontaine F, Wery J. 2020. Current knowledge on grapevine trunk diseases with complex etiology: a systemic approach. Phytopathol Mediterr. 59(1):29–53. doi:10.36253/phyto-11150.
  • Cragg SM, Beckham GT, Bruce NC, Bugg TD, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, et al. 2015. Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol. 29:108–19. doi:10.1016/j.cbpa.2015.10.018.
  • Črešnar B, Žakelj-Mavrič M. 2009. Aspects of the steroid response in fungi. Chem Biol Interact. 178(1–3):303–09. doi:10.1016/j.cbi.2008.11.002.
  • Cvelbar D, Žist V, Kobal K, Žigon D, Žakelj-Mavrič M. 2013. Steroid toxicity and detoxification in ascomycetous fungi. Chem Biol Interact. 202(1–3):243–58. doi:10.1016/j.cbi.2012.11.025.
  • Dai W, Huang Q, Yin P, Li J, Zhou J, Kong H, Zhao C, Lu X, Xu G. 2012. Comprehensive and highly sensitive urinary steroid hormone profiling method based on stable isotope-labeling liquid chromatography–mass spectrometry. Anal Chem. 84(23):10245–51. doi:10.1021/ac301984t.
  • Demain AL. 1986. Regulation of secondary metabolism in fungi. Pure Appl Chem. 58(2):219–26. doi:10.1351/pac198658020219.
  • Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, Asiegbu FO, Baker SE, Barry K, Bendiksby M, et al. 2011. The plant cell wall—decomposing machinery underlies the functional diversity of forest fungi. Science. 333(6043):762–65. doi:10.1126/science.1205411.
  • Eriksson K-E PB. 1975. Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose. Eur J Biochem. 51(1):193–206. doi:10.1111/j.1432-1033.1975.tb03919.x.
  • Escobar CA, Kluge M, Sicker D. 1997. Syntheses of 2-hydroxy-4,7-dimethoxy-2H-1,4-benzoxazin-3(4H)-one: a precursor of a bioactive electrophile from Gramineae. Tetrahedron Lett. 38(6):1017–20. doi:10.1016/S0040-4039(96)02492-6.
  • Esteves AC, Saraiva M, Correia A, Alves A. 2014. Botryosphaeriales fungi produce extracellular enzymes with biotechnological potential. Can J Microbiol. 60(5):332–42. doi:10.1139/cjm-2014-0134.
  • Evidente A, Punzo B, Andolfi A, Cimmino A, Melck D, Luque J. 2010. Lipophilic phytotoxins produced by Neofusicoccum parvum, a grapevine canker agent. Phytopathol Mediterr. 49:74–79.
  • Fernández-Fueyo E, Ruiz-Dueñas FJ, López-Lucendo MF, Pérez-Boada M, Rencoret J, Gutiérrez A, Pisabarro AG, Ramírez L, Martínez AT. 2016. A secretomic view of woody and nonwoody lignocellulose degradation by Pleurotus ostreatus. Biotechnol Biofuels. 9(1):49. doi:10.1186/s13068-016-0462-9.
  • Fontaine F, Pinto C, Vallet J, Clément C, Gomes AC, Spagnolo A. 2016. The effects of grapevine trunk diseases (GTDs) on vine physiology. Eur J Plant Pathol. 144(4):707–21. doi:10.1007/s10658-015-0770-0.
  • Frazee AC, Pertea G, Jaffe AE, Langmead B, Salzberg SL, Leek JT. 2015. Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat Biotechnol. 33(3):243–46. doi:10.1038/nbt.3172.
  • Garcia JF, Lawrence DP, Morales-Cruz A, Travadon R, Minio A, Hernandez-Martinez R, Rolshausen PE, Baumgartner K, Cantu D. 2021. Phylogenomics of plant-associated Botryosphaeriaceae species. Front Microbiol. 12: 652802.
  • Gaskell J, Blanchette RA, Stewart PE, BonDurant SS, Adams M, Sabat G, Kersten P, Cullen D. 2016. Transcriptome and secretome analyses of the wood decay fungus Wolfiporia cocos support alternative mechanisms of lignocellulose conversion. Appl Environ Microbiol. 82(13):3979–87. doi:10.1128/AEM.00639-16.
  • Gibson DM, King BC, Hayes ML, Bergstrom GC. 2011. Plant pathogens as a source of diverse enzymes for lignocellulose digestion. Curr Opin Microbiol. 14(3):264–70. doi:10.1016/j.mib.2011.04.002.
  • Gómez-Gómez E, Ruı́z-Roldán MC, Di Pietro A, Roncero MIG, Hera C. 2002. Role in pathogenesis of two endo-β-1,4-xylanase genes from the vascular wilt fungus Fusarium oxysporum. Fungal Genet Biol. 35(3):213–22. doi:10.1006/fgbi.2001.1318.
  • Griffith EC, Su Z, Turk BE, Chen S, Chang Y-H, Wu Z, Biemann K, Liu JO. 1997. Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicin. Chem Biol. 4(6):461–71. doi:10.1016/S1074-5521(97)90198-8.
  • Gu Y, Chen X, Shang C, Singh K, Barzegar M, Mahdavian E, Salvatore BA, Jiang S, Huang S. 2014. Fusarochromanone induces G1 cell cycle arrest and apoptosis in COS7 and HEK293 cells. PLOS ONE. 9(11):e112641. doi:10.1371/journal.pone.0112641.
  • Gupta R, Min CW, Kramer K, Agrawal GK, Rakwal R, Park K-H, Wang Y, Finkemeier I, Kim ST. 2018. A Multi-omics analysis of Glycine max leaves reveals alteration in flavonoid and isoflavonoid metabolism upon ethylene and abscisic acid treatment. Proteomics. 18(7):1700366. doi:10.1002/pmic.201700366.
  • Häkkinen M, Arvas M, Oja M, Aro N, Penttilä M, Saloheimo M, Pakula TM. 2012. Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb Cell Fact. 11(1):134. doi:10.1186/1475-2859-11-134.
  • Hosztafi S. 2014. Recent advances in the chemistry of oripavine and its derivatives. Adv Biosci Biotechnol. 05(8):704–17. doi:10.4236/abb.2014.58084.
  • Kastelic-Suhadolc T, Plemenitaš A, Žigon D. 1994. Isolation and identification of testosterone and androstenedione in the fungus Cochliobolus lunatus. Steroids. 59(6):357–61. doi:10.1016/0039-128X(94)90002-7.
  • Kidby DK, Davidson DJ. 1973. A convenient ferricyanide estimation of reducing sugars in the nanomole range. Anal Biochem. 55(1):321–25. doi:10.1016/0003-2697(73)90323-0.
  • Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 12(4):357–60. doi:10.1038/nmeth.3317.
  • Kollerov VV, Lobastova TG, Monti D, Deshcherevskaya NO, Ferrandi EE, Fronza G, Riva S, Donova MV. 2016. Deoxycholic acid transformations catalyzed by selected filamentous fungi. Steroids. 107:20–29. doi:10.1016/j.steroids.2015.12.015.
  • Kollerov V, Shutov A, Kazantsev A, Donova M. 2020. Biotransformation of androstenedione and androstadienedione by selected Ascomycota and Zygomycota fungal strains. Phytochemistry. 169:112160. doi:10.1016/j.phytochem.2019.112160.
  • Koschmieder J, Wüst F, Schaub P, Álvarez D, Trautmann D, Krischke M, Rustenholz C, Mano J, Mueller MJ, Bartels D, et al. 2021. Plant apocarotenoid metabolism utilizes defense mechanisms against reactive carbonyl species and xenobiotics. Plant Physiol. 185(2):331–51. doi:10.1093/plphys/kiaa033.
  • Kubicek CP, Kubicek EM. 2016. Enzymatic deconstruction of plant biomass by fungal enzymes. Curr Opin Chem Biol. 35:51–57. doi:10.1016/j.cbpa.2016.08.028.
  • Kubicek CP, Starr TL, Glass NL. 2014. Plant cell wall–degrading enzymes and their secretion in plant-pathogenic Fungi. Annu Rev Phytopathol. 52(1):427–51. doi:10.1146/annurev-phyto-102313-045831.
  • Kuramoto T, Furukawa Y, Nishina T, Sugimoto T, Mahara R, Tohma M, Kihira K, Hoshita T. 1990. Identification of short side chain bile acids in urine of patients with cerebrotendinous xanthomatosis. J Lipid Res. 31(10):1895–902. doi:10.1016/S0022-2275(20)42333-8.
  • Lagace TA, Ridgway ND. 2013. The role of phospholipids in the biological activity and structure of the endoplasmic reticulum. Biochimica Et Biophysica Acta (BBA) - Molecular Cell Research. 1833(11):2499–510. doi:10.1016/j.bbamcr.2013.05.018.
  • Larignon P, Fulchic R, Cere L, Dubos B. 2001. Observation on black dead arm in French vineyards. Phytopathol Mediterr. 40:S336–S342.
  • Leonowicz A, Grzywnowicz K. 1981. Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate. Enzyme Microb Technol. 3(1):55–58. doi:10.1016/0141-0229(81)90036-3.
  • Levasseur O, Stafford L, Gherardi N, Naudé N, Beche E, Esvan J, Blanchet P, Riedl B, Sarkissian A. 2013. Role of substrate outgassing on the formation dynamics of either hydrophilic or hydrophobic wood surfaces in atmospheric-pressure, organosilicon plasmas. Surf Coat Technol. 234:42–47. doi:10.1016/j.surfcoat.2013.05.045.
  • Lin H, Travisano M, Kazlauskas RJ. 2016. The fungus Trichoderma regulates submerged conidiation using the steroid pregnenolone. ACS Chem Biol. 11(9):2568–75. doi:10.1021/acschembio.6b00376.
  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42(D1):D490–D495. doi:10.1093/nar/gkt1178.
  • MacDonald J, Doering M, Canam T, Gong Y, Guttman DS, Campbell MM, Master ER. 2011. Transcriptomic responses of the softwood-degrading white-rot fungus Phanerochaete carnosa during growth on coniferous and deciduous wood. Appl Environ Microbiol. 77(10):3211–18. doi:10.1128/AEM.02490-10.
  • Macías FA, Marín D, Oliveros-Bastidas A, Castellano D, Simonet AM, Molinillo JMG. 2005. Structure−Activity Relationships (SAR) studies of benzoxazinones, their degradation products and analogues. Phytotoxicity on Standard Target Species (STS). J Agric Food Chem. 53(3):538–48. doi:10.1021/jf0484071.
  • Martos S, Andolfi A, Luque J, Mugnai L, Surico G, Evidente A. 2008. Production of phytotoxic metabolites by five species of Botryosphaeriaceae causing decline on grapevines, with special interest in the species Neofusicoccum luteum and N. parvum. Eur J Plant Pathol. 121(4):451–61. doi:10.1007/s10658-007-9263-0.
  • Massonnet M, Morales-Cruz A, Figueroa-Balderas R, Lawrence DP, Baumgartner K, Cantu D. 2018. Condition-dependent co-regulation of genomic clusters of virulence factors in the grapevine trunk pathogen Neofusicoccum parvum. Mol Plant Pathol. 19(1):21–34. doi:10.1111/mpp.12491.
  • Metreveli E, Khardziani T, Elisashvili V. 2021. The carbon source controls the secretion and yield of polysaccharide-hydrolyzing enzymes of Basidiomycetes. Biomolecules. 11(9):1341. doi:10.3390/biom11091341.
  • Miedes E, Vanholme R, Boerjan W, Molina A. 2014. The role of the secondary cell wall in plant resistance to pathogens. Front Plant Sci. 5:5: 358. doi:10.3389/fpls.2014.00005.
  • Minder AC, Kee DR, Narberhaus F, Fischer H-M, Hennecke H, Geiger O. 2001. Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant. Mol Microbiol. 39(5):1186–98. doi:10.1111/j.1365-2958.2001.02325.x.
  • Mondello V, Songy A, Battiston E, Pinto C, Coppin C, Trotel-Aziz P, Clément C, Mugnai L, Fontaine F. 2018. Grapevine trunk diseases: a review of fifteen years of trials for their control with chemicals and biocontrol agents. Plant Dis. 102(7):1189–217. doi:10.1094/PDIS-08-17-1181-FE.
  • Morales-Cruz A, Amrine KCH, Blanco-Ulate B, Lawrence DP, Travadon R, Rolshausen PE, Baumgartner K, Cantu D. 2015. Distinctive expansion of gene families associated with plant cell wall degradation, secondary metabolism, and nutrient uptake in the genomes of grapevine trunk pathogens. BMC Genom. 16(1):469. doi:10.1186/s12864-015-1624-z.
  • Mukherjee S, Khowala S. 2016. Unraveling the secretome of Termitomyces clypeatus grown on agroresidues as a potential source for bioethanol production. Process Biochem. 51(11):1793–807. doi:10.1016/j.procbio.2015.11.019.
  • Nafisi M, Stranne M, Zhang L, van Kan JAL, Sakuragi Y. 2014. The endo-arabinanase bcara1 is a novel host-specific virulence factor of the necrotic fungal phytopathogen Botrytis cinerea. Mol Plant Microbe Interact. 27(8):781–92. doi:10.1094/MPMI-02-14-0036-R.
  • Nagel JH, Wingfield MJ, Slippers B. 2021. Increased abundance of secreted hydrolytic enzymes and secondary metabolite gene clusters define the genomes of latent plant pathogens in the Botryosphaeriaceae. BMC Genom. 22(1):589. doi:10.1186/s12864-021-07902-w.
  • Naya K, Hayashi M, Takagi I, Nakamura S, Kobayashi M. 1972. The structural elucidation of sesquiterpene lactones from Petasites japonicus Maxim. Bull Chem Soc Jpn. 45(12):3673–85. doi:10.1246/bcsj.45.3673.
  • Nazar Pour F, Cobos R, Rubio Coque JJ, Serôdio J, Alves A, Félix C, Ferreira V, Esteves AC, Duarte AS. 2020. Toxicity of recombinant Necrosis and Ethylene-Inducing Proteins (NLPs) from Neofusicoccum parvum. Toxins. 12(4):235. doi:10.3390/toxins12040235.
  • Nazar Pour F, Pedrosa B, Oliveira M, Fidalgo C, Devreese B, Driessche GV, Félix C, Rosa N, Alves A, Duarte AS, et al. 2022. Unveiling the secretome of the fungal plant pathogen Neofusicoccum parvum induced by in vitro host mimicry. J Fungi. 8(9):971. doi:10.3390/jof8090971.
  • Nguyen QB, Itoh K, Van Vu B, Tosa Y, Nakayashiki H. 2011. Simultaneous silencing of endo-β-1,4 xylanase genes reveals their roles in the virulence of Magnaporthe oryzae. Mol Microbiol. 81(4):1008–19. doi:10.1111/j.1365-2958.2011.07746.x.
  • Nicoletti R, Fiorentino A. 2015. Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture. 5(4):918–70. doi:10.3390/agriculture5040918.
  • Ni M, Wu Q, Wang GS, Liu QQ, Yu MX, Tang J. 2019. Analysis of metabolic changes in Trichoderma asperellum TJ01 at different fermentation time-points by LC-QQQ-MS. J Environ Sci Health B. 54(1):20–26. doi:10.1080/03601234.2018.1507227.
  • Ohashi K, Miyagawa Y, Nakamura Y, Shibuya H. 2008. Bioproduction of bile acids and the glycine conjugates by Penicillium fungus. J Nat Med. 62(1):83–86. doi:10.1007/s11418-007-0190-3.
  • Oliveros JC. 2007. VENNY. An interactive tool for comparing lists with Venn diagrams. https://bioinfogp.cnb.csic.es/tools/venny/index.html.
  • Ozawa H, Miyazawa T, Burdeos GC, Miyazawa T. 2022. Biological functions of antioxidant dipeptides. J Nutr Sci Vitaminol (Tokyo). 68(3):162–71. doi:10.3177/jnsv.68.162.
  • Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, Gauthier C, P-é J, Li S, Xia J. 2021. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49(W1):W388–W396. doi:10.1093/nar/gkab382.
  • Pedras MSC, Yaya EE. 2015. Plant chemical defenses: are all constitutive antimicrobial metabolites phytoanticipins? Nat Prod Commun. 10(1):209–18. doi:10.1177/1934578X1501000142.
  • Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 11(9):1650–67. doi:10.1038/nprot.2016.095.
  • Phillips AJL, Alves A, Abdollahzadeh J, Slippers B, Wingfield MJ, Groenewald JZ, Crous PW. 2013. The Botryosphaeriaceae: genera and species known from culture. Stud Mycol. 76:51–167. doi:10.3114/sim0021.
  • Plemenitaš A, Kastelic-Suhadolc T, Žigon D, Žakelj-Mavrič M. 1999. Steroidogenesis in the fungus Pleurotus ostreatus. Comp Biochem Physiol B Biochem Mol Biol. 123(2):175–79. doi:10.1016/S0305-0491(99)00053-X.
  • Rahman MS, Fernando S, Ross B, Wu J, Qin W. 2018. Endoglucanase (EG) activity assays, and Lübeck M, editor. Cellulases: methods and protocols. New York (NY, USA): Humana Press. p. 169–83.
  • Rajesh Banu J, Preethi KS, Tyagi VK, Gunasekaran M, Karthikeyan OP, Kumar G. 2021. Lignocellulosic biomass based biorefinery: a successful platform towards circular bioeconomy. Fuel. 302:121086. doi:10.1016/j.fuel.2021.121086.
  • Ramírez-Suero M, Bénard-Gellon M, Chong J, Laloue H, Stempien E, Abou-Mansour E, Fontaine F, Larignon P, Mazet-Kieffer F, Farine S, et al. 2014. Extracellular compounds produced by fungi associated with Botryosphaeria dieback induce differential defence gene expression patterns and necrosis in Vitis vinifera cv. Chardonnay cells. Chardonnay cells. Protoplasma. 251(6):1417–26. doi:10.1007/s00709-014-0643-y.
  • Reis P, Gaspar A, Alves A, Fontaine F, Lourenço I, Saramago J, Mota M, Rego C. 2020. Early season symptoms on stem, inflorescences and flowers of grapevine associated with Botryosphaeriaceae species. Plants. 9(11):1427. doi:10.3390/plants9111427.
  • Reis P, Magnin-Robert M, Nascimento T, Spagnolo A, Abou-Mansour E, Fioretti C, Clément C, Rego C, Fontaine F. 2016. Reproducing Botryosphaeria dieback foliar symptoms in a simple model system. Plant Dis. 100(6):1071–79. doi:10.1094/PDIS-10-15-1194-RE.
  • Reveglia P, Savocchia S, Billones-Baaijens R, Masi M, Cimmino A, Evidente A. 2019. Phytotoxic metabolites by nine species of Botryosphaeriaceae involved in grapevine dieback in Australia and identification of those produced by Diplodia mutila, Diplodia seriata, Neofusicoccum australe and Neofusicoccum luteum. Nat Prod Res. 33(15):2223–29. doi:10.1080/14786419.2018.1497631.
  • Ross S, Giglione C, Pierre M, Espagne C, Meinnel T. 2005. Functional and developmental impact of cytosolic protein n-terminal methionine excision in Arabidopsis. Plant Physiol. 137(2):623–37. doi:10.1104/pp.104.056861.
  • Rytioja J, Hildén K, Di Falco M, Zhou M, Aguilar-Pontes MV, O-M S, Tsang A, de Vries RP, MR M. 2017. The molecular response of the white-rot fungus Dichomitus squalens to wood and non-woody biomass as examined by transcriptome and exoproteome analyses. Environ Microbiol. 19(3):1237–50. doi:10.1111/1462-2920.13652.
  • Sakalidis ML, Slippers B, Wingfield BD, GEStJ H, Burgess TI. 2013. The challenge of understanding the origin, pathways and extent of fungal invasions: global populations of the Neofusicoccum parvum-N. ribis species complex. Divers Distrib. 19(8):873–83. doi:10.1111/ddi.12030.
  • Saldarriaga-Hernández S, Velasco-Ayala C, Leal-Isla Flores P. de Jesús Rostro-Alanis M, Parra-Saldivar R, Iqbal HMN, Carrillo-Nieves D. 2020. Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes. Int J Biol Macromol. 161:1099–116. doi:10.1016/j.ijbiomac.2020.06.047.
  • Salvatore MM, Alves A, Andolfi A. 2021. Secondary metabolites produced by Neofusicoccum species associated with plants: a review. Agriculture. 11(2):149. doi:10.3390/agriculture11020149.
  • Sella L, Gazzetti K, Faoro F, Odorizzi S, D’Ovidio R, Schäfer W, Favaron F. 2013. A Fusarium graminearum xylanase expressed during wheat infection is a necrotizing factor but is not essential for virulence. Plant Physiol Biochem. 64:1–10. doi:10.1016/j.plaphy.2012.12.008.
  • Shi J, Zeng Q, Liu Y, Pan Z. 2012. Alternaria sp. MG1, a resveratrol-producing fungus: isolation, identification, and optimal cultivation conditions for resveratrol production. Appl Microbiol Biotechnol. 95(2):369–79. doi:10.1007/s00253-012-4045-9.
  • Siebers M, Brands M, Wewer V, Duan Y, Hölzl G, Dörmann P. 2016. Lipids in plant–microbe interactions. Biochimica Et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1861(9):1379–95. doi:10.1016/j.bbalip.2016.02.021.
  • Stempien E, Goddard M-L, Leva Y, Bénard-Gellon M, Laloue H, Farine S, Kieffer-Mazet F, Tarnus C, Bertsch C, Chong J. 2018. Secreted proteins produced by fungi associated with Botryosphaeria dieback trigger distinct defense responses in Vitis vinifera and Vitis rupestris cells. Protoplasma. 255(2):613–28. doi:10.1007/s00709-017-1175-z.
  • Stempien E, Goddard M-L, Wilhelm K, Tarnus C, Bertsch C, Chong J. 2017. Grapevine Botryosphaeria dieback fungi have specific aggressiveness factor repertory involved in wood decay and stilbene metabolization. PLOS ONE. 12(12):e0188766. doi:10.1371/journal.pone.0188766.
  • Teimoori-Boghsani Y, Ganjeali A, Cernava T, Müller H, Asili J, Berg G. 2020. Endophytic fungi of native Salvia abrotanoides plants reveal high taxonomic diversity and unique profiles of secondary metabolites. Front Microbiol. 11:10: 3013. doi:10.3389/fmicb.2020.00010.
  • Thirumalaikumar VP, Wagner M, Balazadeh S, Skirycz A. 2021. Autophagy is responsible for the accumulation of proteogenic dipeptides in response to heat stress in Arabidopsis thaliana. FEBS J. 288(1):281–92. doi:10.1111/febs.15336.
  • Travadon R, Rolshausen PE, Gubler WD, Cadle-Davidson L, Baumgartner K. 2013. Susceptibility of cultivated and Wild Vitis spp. to wood infection by fungal trunk pathogens. Plant Dis. 97(12):1529–36. doi:10.1094/PDIS-05-13-0525-RE.
  • Trotel-Aziz P, Robert-Siegwald G, Fernandez O, Leal C, Villaume S, Guise J-F, Abou-Mansour E, Lebrun M-H,Fontaine F. 2022. Diversity of Neofusicoccum parvum for the production of the phytotoxic metabolites (-)-terremutin and (R)-mellein. J Fungi. 8(3):319. doi:10.3390/jof8030319.
  • Turner GC, Du F, Varshavsky A. 2000. Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway. Nature. 405(6786):579–83. doi:10.1038/35014629.
  • Umezawa K, Niikura M, Kojima Y, Goodell B, Yoshida M. 2020. Transcriptome analysis of the brown rot fungus Gloeophyllum trabeum during lignocellulose degradation. PLOS ONE. 15(12):e0243984. doi:10.1371/journal.pone.0243984.
  • Úrbez-Torres JR. 2011. The status of Botryosphaeriaceae species infecting grapevines. Phytopathol Mediterr. 50:S5–S45.
  • Úrbez-Torres JR, Gubler WD. 2009. Pathogenicity of Botryosphaeriaceae species isolated from grapevine cankers in California. Plant Dis. 93(6):584–92. doi:10.1094/PDIS-93-6-0584.
  • Van den Wymelenberg A, Gaskell J, Mozuch M, Splinter Bondurant S, Sabat G, Ralph J, Skyba O, Mansfield SD, Blanchette RA, Grigoriev IV, et al. 2011. Significant alteration of gene expression in wood decay fungi Postia placenta and Phanerochaete chrysosporium by plant species. Appl Environ Microbiol. 77(13):4499–507. doi:10.1128/AEM.00508-11.
  • Van Soest PJ, Robertson JB. 1980. Systems of analysis for evaluating fibrous feeds. In: Pigden WJ, Balch CC, Graham M, editors. Standardization of analytical methodology for feeds: proceedings of a workshop held in Ottawa, Canada, 1979 Mar 12–14. Ottawa (Canada): International Development Research Centre. p. 49–60.
  • Viel M, Collet F, Lanos C. 2018. Chemical and multi-physical characterization of agro-resources’ by-product as a possible raw building material. Ind Crops Prod. 120:214–37. doi:10.1016/j.indcrop.2018.04.025.
  • Wang J, Wang H, Zhang C, Wu T, Ma Z, Chen Y. 2019. Phospholipid homeostasis plays an important role in fungal development, fungicide resistance and virulence in Fusarium graminearum. Phytopathology Res. 1(1):16. doi:10.1186/s42483-019-0023-9.
  • Wegener S, Ransom RF, Walton J. 1999. A unique eukaryotic β-xylosidase gene from the phytopathogenic fungus Cochliobolus carbonum. Microbiology. 145(5):1089–95. doi:10.1099/13500872-145-5-1089.
  • Wessel M, Klüsener S, Gödeke J, Fritz C, Hacker S, Narberhaus F. 2006. Virulence of Agrobacterium tumefaciens requires phosphatidylcholine in the bacterial membrane. Mol Microbiol. 62(3):906–15. doi:10.1111/j.1365-2958.2006.05425.x.
  • Wewer V, Brands M, Dörmann P. 2014. Fatty acid synthesis and lipid metabolism in the obligate biotrophic fungus Rhizophagus irregularis during mycorrhization of Lotus japonicus. Plant J. 79(3):398–412. doi:10.1111/tpj.12566.
  • Wu B, Gaskell J, Held BW, Toapanta C, Vuong TV, Ahrendt S, Lipzen A, Zhang J, Schilling JS, Master E, et al. 2021. Retracted and Republished from: “Substrate-Specific Differential Gene Expression and RNA Editing in the Brown Rot Fungus Fomitopsis pinicola”. Appl Environ Microbiol. 87(16):e00329–21. doi:10.1128/AEM.00329-21.
  • Wu S-C, Halley JE, Luttig C, Fernekes LM, Gutiérrez-Sanchez G, Darvill AG, Albersheim P. 2006. Identification of an endo -β-1,4- d -Xylanase from Magnaporthe grisea by gene knockout analysis, purification, and heterologous expression. Appl Environ Microbiol. 72(2):986–93. doi:10.1128/AEM.72.2.986-993.2006.
  • Xie W, Mirocha CJ, Wen Y, Pawlosky RJ. 1990. Isolation and structural identification of a new metabolite of Fusarium equiseti. Appl Environ Microbiol. 56(9):2946–48. doi:10.1128/aem.56.9.2946-2948.1990.
  • Xu F, Yu J, Tesso T, Dowell F, Wang D. 2013. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy. 104:801–09. doi:10.1016/j.apenergy.2012.12.019.
  • Yajima W, Liang Y, Kav NNV. 2009. Gene disruption of an arabinofuranosidase/β-xylosidase precursor decreases Sclerotinia sclerotiorum virulence on canola tissue. Mol Plant Microbe Interact. 22(7):783–89. doi:10.1094/MPMI-22-7-0783.
  • Yuan L, Zhao P-J, Ma J, Lu C-H, Shen Y-M. 2009. Labdane and Tetranorlabdane Diterpenoids from Botryosphaeria sp. MHF, an Endophytic fungus of Maytenus hookeri. Helv Chim Acta. 92(6):1118–25. doi:10.1002/hlca.200800424.
  • Yu C, Diao Y, Lu Q, Zhao J, Cui S, Xiong X, Lu A, Zhang X, Liu H. 2022. Comparative genomics reveals evolutionary traits, mating strategies, and pathogenicity-related genes variation of Botryosphaeriaceae. Front Microbiol. 13: 800981.
  • Zaher AM, Moharram AM, Davis R, Panizzi P, Makboul MA, Calderón AI. 2015. Characterisation of the metabolites of an antibacterial endophyte Botryodiplodia theobromae Pat. of Dracaena draco L. by LC–MS/MS. Nat Prod Res. 29(24):2275–81. doi:10.1080/14786419.2015.1012715.
  • Žakelj-Mavrič M, Kastelic-Suhadolc T, Plemenitaš A, Rižner TL, Belič I. 1995. Steroid hormone signalling system and fungi. Comp Biochem Physiol B Biochem Mol Biol. 112(4):637–42. doi:10.1016/0305-0491(95)00113-1.
  • Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, Busk PK, Xu Y, Yin Y. 2018. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46(W1):W95–W101. doi:10.1093/nar/gky418.