53
Views
0
CrossRef citations to date
0
Altmetric
Plant Pathogens

The role of Phanerochaete australis in enhancing defense activity against Magnaporthe oryzae in upland rice

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 558-576 | Received 02 Aug 2023, Accepted 16 Apr 2024, Published online: 31 May 2024

LITERATURE CITED

  • Amarendis R, Mondaini A, Rodriguez A. 2023. Bioinsumos de uso agrícola: situación y perspectivas en América Latina y el Caribe”, Documentos de Proyectos (LC/TS.2023/149). Santiago: Comisión Económica para América Latina y el Caribe (CEPAL).
  • Anderson D, Prasad K, Stewart R. 1995. Changes in isozyme profiles of catalase, peroxidase and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol. 109(4):1247–1257. doi:10.1104/pp.109.4.1247.
  • Arriel-Elias MT, Côrtes MVCB, de Sousa TP, Chaibub AA, Filippi MCC. 2019. Induction of resistance in rice plants using bioproducts produced from Burkholderia pyrrocinia BRM 32113. Environ Sci Pollut Res. 26:19705–19718. doi:10.1007/s11356-019-05238-3.
  • Axelrod B, Cheesbrough TM, Laakso S. 1981. Lipoxygenase from soybeans. Methods Enzymol. 71:441–451. doi:10.1016/0076-6879(81)71055-3.
  • Baker NR, Oxborough K, Lawson T, Morison JIL. 2001. High resolution imaging of photosynthetic activities of tissues, cells and chloroplasts in leaves. J Exp Bot. 52:615–621. doi:10.1093/jxb/52.356.615.
  • Bassanezi RB, Amorim L, Bergamin Filho A, Bergerv RD. 2002. Gas exchange and emission of chlorophyll fluorescence during the monocycle of rust, angular leaf spot and anthracnose on bean leaves as a function of their trophic characteristics. J Phytopathol. 150(1):37–47. doi:10.1046/j.1439-0434.2002.00714.x.
  • Beauchamp C, Fridovich I. 1971. Superoxide dismutase: improved assaysand an assay applicable to acrylamide gels. Anal Biochem. 44:276–287. doi:10.1016/0003-2697(71)90370-8.
  • Bermúdez-Cardona MB, Wordell Filho JA, Rodrigues FA. 2015. Leaf gas exchange and chlorophyll a fluorescence in maize leaves infected with Stenocarpella macrospora. Phytopathology. 105:26–34. doi:10.1094/PHYTO-04-14-0096-R.
  • Bezerra GA, Chaibub AA, Olveira MIS, Mizubuti ESG, Filippi MCC. 2021. Evidence of Pyricularia oryzae adaptability to tricyclazole. J Environ Sci Health Part B. 56:(10:869–876. doi:10.1080/03601234.2021.1971913.
  • Boutrot F, Zipfel C. 2017. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu Rev Phytopathol. 55:257–286. doi:10.1146/annurev-phyto-080614-120106.
  • Bradford M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Ann Biochem Exp Med. 72:248–254. doi:10.1016/0003-2697(76)90527-3.
  • Cakmak I, Marschner H. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol. 98:1222–1227. doi:10.1104/pp.98.4.1222.
  • Camacho-Morales RL, Gerardo-Gerardo JL, Guillén Navarro K, Sánchez JE. 2017. Ligninolytic enzyme production by white rotfungi during paraquat (herbicide) degradation. Rev Argent Microbiol. 49:189–196. doi:10.1016/j.ram.2016.11.004.
  • Camejo D, Guzman-Cedeño A, Moreno A. 2016. Reactive oxygen species, essential molecules, during plant-pathogen interactions. Plant Physiol Biochem. 103:10–23. doi:10.1016/j.plaphy.2016.02.035.
  • Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, et al. 2013. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell. 25:1463–1481. doi:10.1105/tpc.112.107201.
  • Chaibub AA, de Carvalho JCB, Silva CS, Collevatti RS, Gonçalves FJ, Côrtes MVCB, Filippi MCC, Faria FP, Lopes DCB, Araújo LG. 2016. Defence responses in rice plants in prior and simultaneous applications of Cladosporium sp. during leaf blast suppression. Environ Sci Pollut Res. 23:21554–21564. doi:10.1007/s11356-016-7379-5.
  • Chaibub AA, de Sousa TP, de Araújo LG, Filippi MCC. 2020. Cladosporium cladosporioides C24G modulates gene expression and enzymatic activity during leaf blast suppression in rice plants. J Plant Growth Regul. 39:1140–1152. doi:10.1007/s00344-019-10052-9.
  • Chen -C-C, Wu S-H, Chen C-Y. 2018. Hydnophanerochaete and Odontoefibula, two new genera of phanerochaetoid fungi (Polyporales, Basidiomycota) from East Asia. MycoKeys. 39:75–96. doi:10.3897/mycokeys.39.28010.
  • Costa NB, Bezerra GA, Pinheiro Filho GO, Moraes MG. 2021. Distribution of non-structural carbohydrates in the vegetative organs of upland rice. Ciênc Agrotec. 45:e008721. doi:10.1590/1413-7054202145008721.
  • Costa NB, Faria DR, Mendonça SM, Moraes MG, Coelho GRC, Filippi MCC, Bhosale R, Castro AP, Lanna AC. 2023. Silicon and bioagents pretreatments synergistically improve upland rice performance during water stress. Plant Stress. 7:100142. doi:10.1016/j.stress.2023.100142.
  • Daayf F, El Hadrami A, El-Bebany AE, Henriquez MA, Yao Z, Derksen H, ElHadrami I, Adam LR. 2012. Phenolic compounds in plant defense and pathogen counter-defense mechanisms. Rec Adv Polyphen Res. 3:191–208. doi:10.1002/9781118299753.ch8.
  • Dallagnol LJ, Rodrigues FA, Martins SCV, Cavatte PC, DaMatta FM. 2011. Alterations on rice leaf physiology during infection by Bipolaris oryzae. Australas Plant Pathol. 40:360–365. doi:10.1007/s13313-011-0048-8.
  • Dean R, Van Kan J, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, et al. 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 13:414–430. doi:10.1111/j.1364-3703.2011.00783.x.
  • Debona D, Rodrigues FA, Rios JA, Nascimento KJT. 2012. Biochemical changes in the leaves of wheat plants infected by Pyricularia oryzae. Phytopathology. 1019: –1121. doi:10.1094/PHYTO-06-12-0125-R.
  • Del Longo OT, Gonzalez CA, Pastori GM, Trippi VS. 1993. Antioxidant defences under hyperoxygenic and hyperosmotic conditions in leaves of two lines of maize with differential sensitivity to drought. Plant Cell Physiol. 34(7):1023–1028. doi:10.1093/oxfordjournals.pcp.a078515.
  • Del Río LA. 2015. ROS and RNS in plant physiology: an overview. J Exp Bot. 66(10):2827–2837. doi:10.1093/jxb/erv099.
  • De Sousa TP, Chaibub AA, da Silva GB, de Filippi MCC. 2020. Trichoderma asperellum modulates defense genes and potentiates gas exchanges in upland rice plants. Physiol Mol Plant Pathol. 112:101561. doi:10.1016/j.pmpp.2020.101561.
  • de Sousa TP, de Souza ACA, de Filippi MCC, Lanna AC, Cortês MV, Pinheiro HA, da Silva GB. 2018. Bioagents and silicon promoting fast early upland rice growth. Environ Sci Pollut Res Int. 25(4):3657–3668. doi:10.1007/s11356-017-0753-0.
  • De Vleesschauwer D, Gheysen G, Hofte M. 2013. Hormone defense networking in rice: tales from a different world. Trends Plant Sci. 18:555–565. doi:10.1016/j.tplants.2013.07.002.
  • Dias CS, Araujo L, Chaves JAA, DaMatta FM, Rodrigues FA. 2018. Water relation, leaf gas exchange and chlorophyll a fluorescence imaging of soybean leaves infected with Colletotrichum truncatum. Plant Physiol Biochem. 127:119–128. doi:10.1016/j.plaphy.2018.03.016.
  • Dias Neto JJ, Santos GR, Anjos LM, Rangel PHN, Ferreira MF. 2010. Hot spots for diversity of magnaporthe oryzae physiological races in irrigated rice fields in Brazil. Pesq Agropecu Bras. 45252–45260. doi:10.1590/S0100-204X2010000300004.
  • Dias CS, Rios JA, Einhardt AM, Chaves JAA, Rodrigues FA. 2020. Effect of glutamate on Pyricularia oryzae infection of rice monitored by changes in photosynthetic parameters and antioxidant metabolism. Physiol Plant. 169:179–193. doi:10.1111/ppl.13061.
  • Dicko MH, Hilhorst R, Gruppen H, Traore AS, Laane C, van Berckel WJ, Voragen AG. 2002. Comparison of content in phenolic compounds, polyphenol oxidase, and peroxidase in grains of fifty sorghum varieties from Burkina Faso. J Agric Food Chem. 50(13):3780–3788. doi:10.1021/jf011642o.
  • Doke N, Miura Y, Sanchez LM, Park HJ, Noritake T, Yoshioka H, Kawakita K. 1996. The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant bio-defence — a review. Gene. 179(1):45–51. doi:10.1016/s0378-1119(96)00423-4.
  • Domiciano GP, Cacique IS, Freitas CC, Filippi MCC, DaMatta FM, Vale FX, Rodrigues FA. 2015. Alterations in gas exchange and oxidative metabolism in rice leaves infected by Pyricularia oryzae are attenuated by silicon. Phytopathology. 105:738–747. doi:10.1094/PHYTO-10-14-0280-R.
  • Fageria NK, Baligar VC. 2003. Upland Rice and Allelopathy. Commun Soil Sci Plant Anal. 34(9–10):1311–1329. doi:10.1081/CSS-120020447.
  • FAOSTAT. Food and Agriculture Data. [accessed 2022 Feb 17]. http://faostat.fao.org/.
  • Ferreira E, Cavalcanti P, Nogueira D. 2014. ExpDes: an R package for ANOVA and experimental designs. Appl Math. 5:2952–2958. doi:10.4236/am.2014.519280.
  • Ferreira RB, Monteiro S, Freitas R, Santos CN, Chen Z, Batista LM, Duarte J, Borges A, Teixeira AR. 2007. The role of plant defence proteins in fungal pathogenesis. Mol Plant Pathol. 8:677–700. doi:10.1111/j.1364-3703.2007.00419.x.
  • Filippi MC, Silva GB, Prabhu AS. 2007. Indução de resistência à brusone em folhas de arroz por isolado avirulento de Magnaporthe oryzae. Fitopatol Bras. 32:387–392. doi:10.1590/S0100-41582007000500003.
  • Filippi MCC, Silva GB, Viana HF, Silva-Lobo VL, Côrtes MVCB, Prabhu AS. 2014. Induction of resistance to rice leaf blast by avirulent isolates of Magnaporthe oryzae. Revista de Ciências Agrárias. 57(4):388–395. doi:10.4322/rca.1673.
  • Floudas D, Hibbett DS. 2015. Revisiting the taxonomy of Phanerochaete (Polyporales, Basidiomycota) using a four gene dataset and extensive ITS sampling. Fungal Biol. 119(8):679–719. doi:10.1016/j.funbio.2015.04.003.
  • Giannopolitis CN, Ries SK. 1977. Superoxide dismutases I. Occurrence in higher plants. Plant Physiol. 59:309–314. doi:10.1104/pp.59.2.309.
  • Hafez YM, Bacsó R, Király Z, Künstler A, Király L. 2012. Up-regulation of antioxidants in tobacco by low concentrations of H2O2 suppresses necrotic disease symptoms. Phytopathology. 102:848–856. doi:10.1094/PHYTO-01-12-0012-R.
  • Hussain T, Hussain N, Ahmed M, Nualsri C, Duangpan S. 2022. Impact of nitrogen application rates on upland rice performance, planted under varying sowing times. Sustainability. 14:1997. doi:10.3390/su14041997.
  • Kar M, Mishra D. 1976. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol. 57(2):315–319. doi:10.1104/pp.57.2.315.
  • Keesey J. 1987. Biochemica information. Indianapolis: Boehringer Manhein Biochemicals.
  • Künstler A, Bacsó R, Gullner G, Hafez YM, Király L. 2016. Staying alive – is cell death dispensable for plant disease resistance during the hypersensitive response? Physiol Mol Plant Pathol. 93:75–84. doi:10.1016/j.pmpp.2016.01.003.
  • Lichtenthaler HK. 1987. Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. In: Douce R, Packer L, editors. Methods Enzymology. New York: Academic Press Inc; p. 350–382.
  • Loureiro A, Nicole MR, Várzea V, Moncada P, Bertrand B, Silva MC. 2012. Coffee resistance to colletotrichum kahawae is associated with lignification, accumulation of phenols and cell death at infection sites. Physiol Mol Plant Pathol. 77(1):23–32. doi:10.1016/j.pmpp.2011.11.002.
  • Nalawade SV, Patel PR, Patil VA. 2020. Biochemical constituents variation in resistant and susceptible rice genotypes against sheath rot and rice blast disease of rice. Int J Curr Microbiol App Sci. 9(5):729–742. doi:10.20546/ijcmas.2020.905.081.
  • Pan SQ, Ye XS, Kuc J. 1991. Association of a β-1,3-glucanase activity and isoform pattern with systemic resistance to blue mold in tobacco induced by stem injection with peronospora tabacina or leaf inoculation with tobacco mosaic virus. Physiol Mol Plant Pathol. 39:25–39. doi:10.1016/0885-5765(91)90029-H.
  • R Core Team. 2019. R: a language and environment for statistical computing. Version 1.2.1335. R Foundation for Statistical Computing, Vienna (Austria). [accessed 2022 Mar 8]. https://www.R-project.org/.
  • Rios JA, Aucique-Perez CE, Debona D, Neto CLBM, Rios VS, Rodrigues FA. 2017. Changes in leaf gas exchange, chlorophyll a fluorescence and antioxidant metabolism within wheat leaves infected by Bipolaris sorokiniana. Ann Appl Biol. 170:189–203. doi:10.1111/aab.12328.
  • Rios VS, Rios JA, Aucique-Pérez CE, Silveira PR, Barros AV, Rodrigues FA. 2018. Leaf gas exchange and chlorophyll a fluorescence in soybean leaves infected by Phakopsora pachyrhizi. J Phytopathol. 166:75–85. doi:10.1111/jph.12663.
  • Rolfe SA, Scholes JD. 2010. Chlorophyll fluorescence imaging of plant-pathogen interactions. Protoplasma. 247(3–4):163–175. doi:10.1007/s00709-010-0203-z.
  • Sharma P, Dubey RS. 2007. Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep. 26:2027–2038. doi:10.1007/s00299-007-0416-6.
  • Sharma P, Jha AB, Dubey RS, Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012:1–26. doi:10.1155/2012/217037.
  • Shasmita MD, Mohapatra PK, Naik SK, Mukherjee AK. 2019. Priming with salicylic acid induces defense against bacterial blight disease by modulating rice plant photosystem II and antioxidant enzymes activity. Physiol Mol Plant Pathol. 108:101427. doi:10.1016/j.pmpp.2019.101427.
  • Smeekens S. Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol. 2000;51:49–81. doi: 10.1146/annurev.arplant.51.1.49.
  • Sousa ACA, Cortes MVCB, Silva GB, Rodrigues FA, Filippi MCC. 2015. Enzyme-induced defense response in the suppression of rice leaf blast (Magnaporthe oryzae) by silicon fertilization and bioagents. Int J Res Stud Biosci. 3(5):22–32.
  • Sperandio EM, Alves TM, Do Vale HMM, de Almeida Gonçalves L, Silva EC, Filippi MCC. 2020. Signaling defense responses of upland rice to avirulent and virulent strains of Magnaporthe oryzae. J Plant Physiol. 153271. doi:10.1016/j.jplph.2020.153271.
  • Sperandio EM, Do Vale HMM, de Souza Reis M, Cortes MVCB, Lanna AC, Filippi MCC. Evaluation of rhizobacteria in upland rice in Brazil: growth promotion and interaction of induced defense responses against leaf blast (Magnaporthe oryzae). Acta Physiol Plant. 2017;39:259. doi:10.1007/s11738-017-2547-x.
  • Tatagiba SD, DaMatta FM, Rodrigues FA. 2015. Leaf gas exchange and chlorophyll a fluorescence imaging of rice leaves infected with Monographella albescens. Phytopathology. 105:180–188. doi:10.1094/PHYTO-04-14-0097-R.
  • Vanderplank JE. 1984. Sink-induced loss of resistance. In: Vanderplank JE, editor. Diseases Resistance in Plants. 2nd ed. London: Academic Press Inc. p. 107–116. doi: 10.1016/B978-0-12-7114422.50015-5.
  • Vidhyasekaran P. 1988. Sugars and diseases resistance. In: Vidhyasekaran P, editor. Physiology of diseases resistance in plants. Michigan, USA: CRC Press. p. 160.
  • Viecelli JC, Aucique-Pérez CE, Dias CS, Siqueira DL, Rodrigues FA. 2018. Photosynthetic response of two Mango cultivars submitted to salt stress and infected with Ceratocystis fimbriata. Sci Agrar. 19:21–27. doi:10.5380/rsa.v19i1.51534.
  • Wei T, Simko V 2021. R package ‘corrplot’: visualization of a Correlation Matrix (Version 0.92). [accessed 2022 Mar 8]. https://github.com/taiyun/corrplot
  • Wu SH. 1990. The Corticiaceae (Basidiomycetes) subfamilies Phlebioideae, Phanerochaetoideae and Hyphodermoideae in Taiwan. Acta Bot Fenn. 142:1–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.