68
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ophiostoma haidaense, sp. nov., a new member of the O. piceae species complex associated with yellow-cedar, Callitropsis nootkatensis

ORCID Icon, , , &
Received 23 Jan 2024, Accepted 17 May 2024, Published online: 21 Jun 2024

LITERATURE CITED

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol. 215:403–410. doi:10.1016/S0022-2836(05)80360-2.
  • Chang R, Duong TA, Taerum SJ, Wingfield MJ, Zhou X, Yin M, De Beer ZW. 2019. Ophiostomatoid fungi associated with the spruce bark beetle Ips typographus, including 11 new species from China. Persoonia. 42(1):50–74. doi:10.3767/persoonia.2019.42.03.
  • Chung WH, Kim JJ, Yamaoka Y, Uzunovic A, Masuya H, Breuil C. 2006. Ophiostoma breviusculum sp. nov. (Ophiostomatales, Ascomycota) is a new species in the Ophiostoma piceae complex associated with bark beetles infesting larch in Japan. Mycologia. 98(5):801–814. doi:10.1080/15572536.2006.11832651.
  • Comeau VM, Daniels LD, Zeglen S. 2021. Climate induced yellow-cedar decline on the island archipelago of Haida Gwaii. Ecosphere. 12(3):e03427. doi:10.1002/ecs2.3427.
  • Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. 2020. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol. 37:291–294. doi:10.1093/molbev/msz189.
  • Davidson RW. 1958. Additional species of Ophiostomataceae from Colorado. Mycologia. 50(5):661–670. doi:10.1080/00275514.1958.12024761.
  • de Beer ZW, Procter M, Wingfield MJ, Marincowitz S, Duong TA. 2022. Generic boundaries in the Ophiostomatales reconsidered and revised. Stud Mycol. 101:57–120. doi:10.3114/sim.2022.101.02.
  • de Beer Zh, Wingfield MJ. 2013. Emerging lineages in the Ophiostomatales. In: Seifert KA, De Beer ZW, and Wingfield MJ, et al., editors. The Ophiostomatoid Fungi: expanding frontiers [CBS Biodiversity Series no. 12.]. Utrecht: CBS-KNAW Fungal Biodiversity Institute. p. 21–46.
  • DiGuistini S, Wang Y, Liao NY, Taylor G, Tanguay P, Feau N, Henrissat B, Chan SK, Hesse-Orce U, Alamouti SM, et al. 2011. Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. Proc Natl Acad Sci USA. 108(6):2504–2509. doi:10.1073/pnas.1011289108.
  • Dowding P. 1970. Colonization of freshly bared pine sapwood surfaces by staining fungi. Trans Br Mycol. 55:399–412. doi:10.1016/S0007-1536(70)80061-4.
  • Feau N, Herath P, Hamelin RC. 2023. DNA-barcoding identification of plant pathogens for disease diagnostics. In: Foroud NA, Neilson JAD, editors. Plant-pathogen interactions. Methods in molecular biology. Vol. 2659. New York (NY): Humana. p. 37–49.
  • Griffin HD. 1968. The genus Ceratocystis in Ontario. Can J Bot. 46:689e718. doi:10.1139/b68-094.
  • Haridas S, Wang Y, Lim L, Massoumi Alamouti S, Jackman S, Docking R, Robertson G, Birol I, Bohlmann J, Breuil C, et al. 2013. The genome and transcriptome of the pine saprophyte Ophiostoma piceae, and a comparison with the bark beetle-associated pine pathogen Grosmannia clavigera. BMC Genom. 14:373. doi:10.1186/1471-2164-14-373.
  • Harrington TC, McNew D, Steimel J, Hofstra D, Farrell R. 2001. Phylogeny and taxonomy of the Ophiostoma piceae complex and the Dutch elm disease fungi. Mycologia. 93(1):111–136. doi:10.1080/00275514.2001.12061284.
  • Hennon PE. 1990. Fungi on Chamaecyparis nootkatensis. Mycologia. 82(1):59–66. doi:10.1080/00275514.1990.12025841.
  • Hennon PE, D’Amore DV, Schaberg PG, Wittwer DT, Shanley CS. 2012. Shifting climate, altered niche, and a dynamic conservation strategy for yellow-cedar in the north pacific coastal rainforest. BioScience. 62:147–158. doi:10.1525/bio.2012.62.2.8.
  • Hennon PE, Shaw CG III, Hansen EM. 1990. Symptoms and fungal associations of declining Chamaecyparis nootkatensis in southeast Alaska. Plant Dis. 74:267–273. doi:10.1094/PD-74-0267.
  • Jacobs K, Bergdahl DR, Wingfield MJ, Halik S, Seifert KA, Bright DE, Wingfield BD. 2004. Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycol Res. 108:411–418. doi:10.1017/S0953756204009748.
  • Jankowiak R, Bilański P, Strzałka B, Linnakoski R, Bosak A, Hausner G. 2019. Four new Ophiostoma species associated with conifer-and hardwood-infesting bark and ambrosia beetles from the Czech Republic and Poland. Antonie van Leeuwenhoek. 112:1501–1521. doi:10.1007/s10482-019-01277-5.
  • Jankowiak R, Szewczyk G, Bilański P, Jazłowiecka D, Harabin B, Linnakoski R. 2021. Blue-stain fungi isolated from freshly felled Scots pine logs in Poland, including Leptographium sosnaicola sp. nov. For Pathol. 51:e12672. doi:10.1111/efp.12672.
  • Karchesy JJ, Kelsey RG, González-Hernández MP. 2018. Yellow-cedar, Callitropsis (Chamaecyparis) nootkatensis, secondary metabolites, biological activities, and chemical ecology. J Chem Ecol. 44:510–524. doi:10.1007/s10886-018-0956-y.
  • Karnovsky MJ. 1965. A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol. 27:137A.
  • Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30:772–780. doi:10.1093/molbev/mst010.
  • Kim JJ, Kim SH, Lee S, Breuil C. 2003. Distinguishing Ophiostoma ips and O. montium two bark beetle-associated sapstain fungi. FEMS Microb Lett. 222:187–192. doi:10.1016/S0378-1097(03)00304-5.
  • Kirisits T. 2013. Dutch elm disease and other Ophiostoma diseases. In: Gonthier P, Nicolotti G, editors. Infectious forest diseases. Wallingford (UK): CABI; p. 256–282.
  • Li J, Masuya H, Okane I, Yamaoka Y. 2016. Ophiostoma sugadairense, a new species in the Ophiostoma piceae complex associated with bark beetles infesting Japanese larch in Japan. Mycoscience. 58(3):154–168. doi:10.1016/j.myc.2016.12.003.
  • Linnakoski R, De Beer ZW, Ahtiainen J, Sidorov E, Niemelä P, Pappinen A, Wingfield MJ. 2010. Ophiostoma spp. associated with pine-and spruce-infesting bark beetles in Finland and Russia. Persoonia. 25(1):72–93. doi:10.3767/003158510X550845.
  • Mathiesen-Käärik A. 1960. Studies on the ecology, taxonomy and physiology of Swedish insect-associated blue stain fungi, especially the genus Ceratocystis. Oikos. 11:1–25. doi:10.2307/3564881.
  • O’Donnell K, Cigelnik E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phyl Evol. 7:103–116. doi:10.1006/mpev.1996.0376.
  • Plourde KV, Bernier L. 2014. A rapid virulence assay for the Dutch elm disease fungus Ophiostoma novo-ulmi by inoculation of apple (Malus × domestica ‘Golden Delicious’) fruits. Plant Pathol. 63:1078–1085. doi:10.1111/ppa.12177.
  • Powell MA, Eaton RA, Webber JF. 1994. The role of microarthropods in the defacement of sawn lumber by sapstain and mould fungi. Can J For Res. 25:1148–1156. doi:10.1139/x95-127.
  • Samson RA, Houbraken J, Thrane U. 2010. CBS-KNAW Fungal Biodiversity Centre; The Netherlands: 2010. Food Indoor Fungi. p. 390.
  • Six DL. 2003. Bark beetle-fungus symbioses. In: Bourtzis K, Miller T, editors. Insect Symbiosis. Boca Raton (FL, USA): CRC Press; p. 97–114.
  • Smith RS. 1970. Black stain in yellow cedar heartwood. Can J Bot. 48(10):1731–1739. doi:10.1139/b70-256.
  • Smith RS, Cserjesi AJ. 1970. Degradation of nootkatin by fungi causing black heartwood stain in yellow cedar. Can J Bot. 48(10):1727–1729. doi:10.1139/b70-255.
  • Solheim H. 1986. Species of Ophiostomataceae isolated from Picea abies infested by the bark beetle Ips typographic. Nord J Bot. 6(2):199–207. doi:10.1111/j.1756-1051.1986.tb00874.x.
  • Stamatakis A. 2014. RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30:1312–1313. doi:10.1093/bioinformatics/btu033.
  • Stöver BC, Müller KF. 2010. TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinf. 11:7. doi:10.1186/1471-2105-11-7.
  • Swofford DL. 2003. PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sunderland: Sinauer Associates.
  • Uzunovic A, Seifert KA, Kim SH, Breuil C. 2000. Ophiostoma setosum, a common sapwood staining fungus from western North America, a new species of the Ophiostoma piceae complex. Mycol Res. 104(4):486–494. doi:10.1017/S0953756299001446.
  • Uzunovic A, Weber J. 1998. Comparison of bluestain fungi grown in vitro and in freshly cut pine billets. Eur J For Path. 28:323–333. doi:10.1111/j.1439-0329.1998.tb01187.x.
  • Wang Z, Liu Y, Wang H, Meng X, Liu X, Decock C, Zhang X, Lu Q. 2020. Ophiostomatoid fungi associated with Ips subelongatus, including eight new species from northeastern China. IMA Fungus. 11:1–29. doi:10.1186/s43008-019-0026-2.
  • Wang Z, Zhou Q, Zheng G, Fang J, Lu Q. 2021. Abundance and diversity of ophiostomatoid fungi associated with the Great Spruce Bark Beetle (Dendroctonus micans) in the Northeastern Qinghai-Tibet Plateau. Front Microbiol. 12:721395. doi:10.3389/fmicb.2021.721395.
  • White TJ, Bruns T, Lee SB, Taylor JW. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York: Academic; p. 315–322.
  • Whitney HS, Blauel RA. 1972. Ascospore dispersion in Ceratocystis spp. and Europhium clavigerum in conifer resin. Mycologia. 64(2):410–414. doi:10.1080/00275514.1972.12019275.
  • Wong CM, Daniels LD. 2017. Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles. Global Chang Biol. 23(5):1926–1941. doi:10.1111/gcb.13554.
  • Yin M, Wingfield MJ, Zhou X, De Beer ZW. 2016. Multigene phylogenies and morphological characterization of five new Ophiostoma spp. associated with spruce-infesting bark beetles in China. Fungal Biol. 120(4):454–470. doi:10.1016/j.funbio.2015.12.004.
  • Yun YH, Hyun MW, Suh DY, Kim SH. 2009. Characterization of a sapstaining fungus, Ophiostoma floccosum, isolated from the sapwood of Pinus thunbergii in Korea. Mycobiology. 37(1):5–9. doi:10.4489/MYCO.2009.37.1.005.
  • Zhao T, Kandasamy D, Krokene P, Chen J, Gershenzon J, Hammerbacher A. 2019. Fungal associates of the tree-killing bark beetle, Ips typographus, vary in virulence, ability to degrade conifer phenolics and influence bark beetle tunneling behavior. Fungal Ecol. 38:71–79. doi:10.1016/j.funeco.2018.06.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.