0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Genome-wide search and gene expression studies reveal candidate effectors with a role in pathogenicity and virulence in Fusarium graminearum

, , , & ORCID Icon
Received 24 Feb 2024, Accepted 18 Jun 2024, Published online: 07 Aug 2024

LITERATURE CITED

  • Agarwal C, Schultz DJ, Perlin MH. 2010. Two phosphodiesterases from Ustilago maydis share structural and biochemical properties with non-fungal phosphodiesterases. Front Microbiol. 1:127. doi:10.3389/fmicb.2010.00127.
  • Alouane T, Rimbert H, Bormann J, González‐montiel GA, Loesgen S, Schäfer W, Freitag M, Langin T, Bonhomme L. 2021. Comparative genomics of eight Fusarium graminearum strains with contrasting aggressiveness reveals an expanded open pangenome and extended effector content signatures. Int J Mol Sci. 22:6257. doi:10.3390/ijms22126257.
  • Andreeva A, Kulesha E, Gough J, Murzin AG. 2020. The SCOP database in 2020: expanded classification of representative family and superfamily domains of known protein structures. Nucleic Acids Res. 48:D376–D382. doi:10.1093/nar/gkz1064.
  • Aparna G, Chatterjee A, Sonti RV, Sankaranarayanan R. 2009. A cell wall-degrading esterase of Xanthomonas oryzae requires a unique substrate recognition module for pathogenesis on rice. Plant Cell. 21:1860–1873. doi:10.1105/tpc.109.066886.
  • Atanassov Z, Nakamura C, Mori N, Kaneda C. 1994. Mycotoxin production and pathogenicity of Fusarium species and wheat resistance to Fusarium head blight. Can J Bot. 72:161–167. doi:10.1139/b9.
  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. 2009. MEME suite: tools for motif discovery and searching. Nucleic Acids Res. 37:W202–W208. doi:10.1093/nar/gkp335.
  • Bhosle SM, Marathe N, Bheri M, Makandar R. 2019. Detection of putative pathogenicity and virulence genes of Erysiphe pisi using genome-wide in-silico search and their suppression by er2 mediated resistance in garden pea. Microb Pathog. 136:103680. doi:10.1016/j.micpath.2019.103680.
  • Brown NA, Antoniw J, Hammond-Kosack KE. 2012. The predicted secretome of the plant pathogenic fungus Fusarium graminearum: a refined comparative analysis. PLOS ONE. 7. doi:10.1371/journal.pone.0033731.
  • Brown NA, Evans J, Mead A, Hammond-Kosack KE. 2017. A spatial temporal analysis of the Fusarium graminearum transcriptome during symptomless and symptomatic wheat infection. Mol Plant Pathol. 18:1295–1312. doi:10.1111/MPP.12564.
  • Browne RA, Cooke BM. 2004. Development and evaluation of an in vitro detached leaf assay for pre-screening resistance to Fusarium head blight in wheat. Eur J Plant Pathol. 110:91–102. doi:10.1023/B:EJPP.0000010143.20226.21.
  • Browne RA, Murphy JP, Cooke BM, Devaney D, Walsh EJ, Griffey CA, Van Sanford DA. 2005. Evaluation of components of Fusarium head blight resistance in soft red winter wheat germplasm using a detached leaf assay. Plant Dis. 89:404–411. doi:10.1094/PD-89-0404.
  • Carbone I, Kohn LM. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 91:553–556. doi:10.1080/00275514.1999.12061051.
  • Chen L, Wang H, Yang J-H, Yang X, Zhang M, Zhao Z, Fan Y, Wang C, Wang J. 2021. Bioinformatics and Transcriptome Analysis of CFEM Proteins in Fusarium graminearum. J Fungi. 7:871. doi:10.3390/jof7100871.
  • Darwiche R, Kelleher A, Hudspeth EM, Schneiter R, Asojo OA. 2016. Structural and functional characterization of the CAP domain of pathogen-related yeast 1 (Pry1) protein. Sci Rep. 6:28838. doi:10.1038/srep28838.
  • DeZwaan TM, Carroll AM, Valent B, Sweigard JA. Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell. 1999;11:2013–2030. doi:10.1105/tpc.11.10.2013. PMID: 10521529.
  • Doehlemann G, Van Der Linde K, Abmann D, Schwammbach D, Hof A, Mohanty A, Jackson D, Kahmann R. 2009. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLOS Pathogen. 5:e1000290. doi:10.1371/journal.ppat.1000290.
  • Du Z, Su H, Wang W, Ye L, Wei H, Peng Z, Anishchenko I, Baker D, Yang J. 2021. The trRosetta server for fast and accurate protein structure prediction. Nat Protoc. 16:5634. doi:10.1038/s41596-021-00628-9.
  • Feng J, Liu G, Selvaraj G, Hughes GR, Wei Y. 2005. A secreted lipase encoded by LIP1 is necessary for efficient use of saturated triglyceride lipids in Fusarium graminearum. Microbiology. 151:3911–3921. doi:10.1099/mic.0.28261-0.
  • Friesen TL, Zhang Z, Solomon PS, Oliver RP, Faris JD. 2008. Characterization of the interaction of a novel Stagonospora nodorum host-selective toxin with a wheat susceptibility gene. Plant Physiol. 146:682–693. doi:10.1104/pp.107.108761.
  • Gorash A, Armonienė R, Kazan K. 2021. Can effectoromics and loss-of-susceptibility be exploited for improving Fusarium head blight resistance in wheat? Crop J. 9:1–16. doi:10.1016/j.cj.2020.06.012.
  • Goswami RS, Kistler HC. 2004. Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol. 5:515–525. doi:10.1111/J.1364-3703.2004.00252.X.
  • Hao G, McCormick S, Usgaard T, Tiley H, Vaughan MM. 2020. Characterization of three Fusarium graminearum effectors and their roles during fusarium head blight. Front Plant Sci. 11:579553. doi:10.3389/fpls.2020.579553.
  • Kersten P, Cullen D. 2014. Copper radical oxidases and related extracellular oxidoreductases of wood-decay agaricomycetes. Fungal Genet Biol. 72:124–130. doi:10.1016/j.fgb.2014.05.011.
  • Kersten PJ, Kirk TK. 1987. Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol. 169:2195–2201. doi:10.1128/jb.169.5.2195-2201.1987.
  • Khaledi N, Taheri P, Falahati-Rastegar M. 2016. Reactive oxygen species and antioxidant system responses in wheat cultivars during interaction with Fusarium species. Australas Plant Pathol. 45:653–670. doi:10.1007/S13313-016-0455-Y/FIGURES/8.
  • Klimes A, Dobinson KF. 2006. A hydrophobin gene, VDH1, is involved in microsclerotial development and spore viability in the plant pathogen Verticillium dahliae. Fungal Genet Biol. 43:283–294. doi:10.1016/j.fgb.2005.12.006.
  • Kulkarni RD, Kelkar HS, Dean RA. 2003. An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins. Trends Biochem Sci. 28:118–121. doi:10.1016/S0968-0004(03)00025-2.
  • Kumar A, Rashmi HMA, Gurjar MS, Prasad VL, Saharan MS. 2021. Identification of Fusarium head blight resistant sources in wheat under artificially inoculated condition. Indian J Agric Sci. 91:895–899. doi:10.56093/ijas.v91i6.114295.
  • Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 33:1870–1874. doi:10.1093/MOLBEV/MSW054.
  • Kuźniak E, Świercz U, Chojak J, Sekulska-Nalewajko J, Gocławski J. 2014. Automated image analysis for quantification of histochemical detection of reactive oxygen species and necrotic infection symptoms in plant leaves. J Plant Interact. 9:167–174. doi:10.1080/17429145.2013.791729.
  • Kwiatkowski NP, Babiker WM, Merz WG, Carroll KC, Zhang SX. 2012. Evaluation of nucleic acid sequencing of the D1/D2 region of the large subunit of the 28S rDNA and the internal transcribed spacer region using smartGene IDNS (corrected) software for identification of filamentous fungi in a clinical laboratory. J Mol Diagn. 14:393–401. doi:10.1016/j.jmoldx.2012.02.004.
  • Lacomme C, Santa Cruz S. 1999. Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc Natl Acad Sci USA. 96:7956–7961. doi:10.1073/PNAS.96.14.7956.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 25:402–408. doi:10.1006/meth.2001.1262.
  • Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, Zuccaro A, Reissmann S, Kahmann R. 2015. Fungal effectors and plant susceptibility. Annu Rev Plant Biol. 66:513–545. doi:10.1146/annurev-arplant-043014-114623.
  • Lo Presti L, Zechmann B, Kumlehn J, Liang L, Lanver D, Tanaka S, Bock R, Kahmann R. 2017. An assay for entry of secreted fungal effectors into plant cells. New Phytol. 3:956–964. doi:10.1111/nph.14188.
  • Lovelace AH, Dorhmi S, Hulin MT, Li Y, Mansfield JW, Ma W. 2023. Effector identification in plant pathogens. Phytopathology. 113:637–650. doi:10.1094/PHYTO-09-22-0337-KD.
  • Lu S, Edwards MC. 2016. Genome-wide analysis of small secreted cysteine-rich proteins identifies candidate effector proteins potentially involved in Fusarium graminearum-wheat interactions. Phytopathology. 106:166–176. doi:10.1094/PHYTO-09-15-0215-R.
  • Lu S, Faris JD, Sherwood R, Friesen TL, Edwards MC. 2014. A dimeric PR-1-type pathogenesis-related protein interacts with ToxA and potentially mediates ToxA-induced necrosis in sensitive wheat. Mol Plant Pathol. 15:650–663. doi:10.1111/MPP.12122.
  • Lysøe E, Seong KY, Kistler HC. 2011. The transcriptome of Fusarium graminearum during the infection of wheat. Mol Plant Microb Interact. 24:995–1000. doi:10.1094/MPMI-02-11-0038.
  • Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J. Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant Microb Interact. 2006;19:123–129. doi:10.1094/MPMI-19-0123. PMID: 16529374.
  • Makandar R, Nalam VJ, Lee H, Trick HN, Dong Y, Shah J. 2012. Salicylic acid regulates basal resistance to fusarium head blight in wheat. Mol Plant Microb Interact. 25:431–439. doi:10.1094/MPMI-09-11-0232.
  • Martínez Cruz J, Romero D, Hierrezuelo J, Thon M, de Vicente A, Pérez García A. 2021. Effectors with chitinase activity (EWCAs), a family of conserved, secreted fungal chitinases that suppress chitin-triggered immunity. Plant Cell. 33:1319–1340. doi:10.1093/plcell/koab011.
  • Mathivanan S, Raghupathi S. 2017. Assessment of the influence of transgenic cotton on beneficial soil rhizosphere microbes. Biotechnol J Int. 19:1–11. doi:10.9734/bji/2017/32592.
  • Mourelos CA, Malbrán I, Megual Goméz D, Balatti PA, Ghiringhelli PD, Lori GA. 2016. Comparison of the efficiency of 5 methods for fungal DNA extraction from crop debris and evaluation of its suitability for the amplification of Fusarium graminearum by PCR. Crop Prot. 82:7–9. doi:10.1016/j.cropro.2015.12.022.
  • Paccanaro MC, Sella L, Castiglioni C, Giacomello F, Martínez Rocha AL, D’Ovidio R, Favaron F. 2017. Synergistic effect of different plant cell wall–degrading enzymes is important for virulence of Fusarium graminearum. Mol Plant Microb Interact. 30:886–895. doi:10.1094/MPMI-07-17-0179-R.
  • Proctor RH, Desjarding AE, McCormick SP, Plattner RD, Alexander NJ, Brown DW. 2002. Genetic analysis of the role of trichothecene and fumonisin mycotoxins in the virulence of Fusarium. Eur J Plant Pathol. 108:691–698. doi:10.1023/A:1020637832371.
  • Quarantin A, Hadeler B, Kröger C, Schäfer W, Favaron F, Sella L, Martínez-Rocha AL. 2019. Different hydrophobins of Fusarium graminearum are involved in hyphal growth, attachment, water-air interface penetration, and plant infection. Front Microbiol. 10:751. doi:10.3389/fmicb.2019.00751.
  • Rafiei V, Vélëz H, Tzelepis G. 2021. The role of glycoside hydrolases in phytopathogenic fungi and oomycetes virulence. Int J Mol Sci. 22:9359. doi:10.3390/ijms22179359.
  • Rampitsch C, Day J, Subramaniam R, Walkowiak S. 2013. Comparative secretome analysis of Fusarium graminearum and two of its non-pathogenic mutants upon deoxynivalenol induction in vitro. Proteomics. 13:1913–1921. doi:10.1002/pmic.201200446.
  • Sharada P, Makandar R. 2023. Assessing garden pea germplasm for powdery mildew resistance through disease phenotyping and genotyping using molecular markers. Plant Genet. 35:100425. doi:10.1016/j.plgene.2023.100425.
  • Skov J, Lemmens M, Giese H. 2004. Role of a Fusarium culmorum ABC transporter (FcABC1) during infection of wheat and barley. Physiol Mol Plant Pathol. 64:245–254. doi:10.1016/j.pmpp.2004.09.005.
  • Sperschneider J, Dodds PN. 2022. EffectorP 3.0: prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes. Mol Plant Microb Interact. 35:146–156. doi:10.1094/MPMI-08-21-0201-R.
  • Stergiopoulos I, De Wit PJ. 2009. Fungal effector proteins. Annu Rev Phytopathol. 47:233–263. doi:10.1146/annurev.phyto.112408.132637.
  • Strømland Ø, Kallio JP, Pschibul A, Skoge RH, Harðardóttir HM, Sverkeli LJ, Heinekamp T, Kniemeyer O, Migaud M, Makarov MV, et al. 2021. Discovery of fungal surface NADases predominantly present in pathogenic species. Nat Commun. 12:1631. doi:10.1038/s41467-021-21307-z.
  • Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G. 2016. Identification of novel Xanthomonas euvesicatoria type III effector proteins by a machine-learning approach. Mol Plant Pathol. 17:398–411. doi:10.1111/mpp.12288.
  • Vicente I, Quaratiello G, Baroncelli R, Vannacci G, Sarrocco S. 2022. Insights on KP4 killer toxin-like proteins of fusarium species in interspecific interactions. J Fungi. 8:968. doi:10.3390/jof8090968.
  • Vleeshouwers VGAA, Oliver RP. 2014. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Mol Plant Microb Interact. 7:196–206. doi:10.1094/MPMI-10-13-0313-IA.
  • Voigt CA, Scha¨fer W, Salomon S. 2005. A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant J. 42:364–375. doi:10.1111/j.1365-313X.2005.02377.x.
  • White TJ, Bruns TD, Lee SB, Taylor JW. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: A Guide to Methods and Applications. New York: Academic Press; p. 315–332.
  • Zhu Z, Hao Y, Mergoum M, Bai G, Humphreys G, Cloutier S, Xia X, He Z. 2019. Breeding wheat for resistance to Fusarium head blight in the global north: China, USA, and Canada. Crop J. 7:730–738. doi:10.1016/j.cj.2019.06.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.