1,305
Views
6
CrossRef citations to date
0
Altmetric
Review articles

Managing soil microbiology: realising opportunities for the productive land-based sectors

Pages 358-376 | Received 27 Aug 2017, Accepted 11 Jan 2018, Published online: 04 Feb 2018

References

  • Abberton MT, Fothergill M, Collins RP, Marshall AH. 2006. Breeding forage legumes for sustainable and profitable farming systems. Aspects of Applied Biology. 80:81–87.
  • Andrews M, Edwards GR, Ridgway HJ, Cameron KC, Di HJ, Raven JA. 2011. Positive plant microbial interactions in perennial ryegrass dairy pasture systems. Annals of Applied BiologyVolume. 159:79–92. doi: 10.1111/j.1744-7348.2011.00473.x
  • Angel R, Claus P, Conrad R. 2012. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. The ISME Journal. 6:847–862. doi: 10.1038/ismej.2011.141
  • Angel R, Soares MIM, Ungar ED, Gillor O. 2010. Biogeography of soil archaea and bacteria along a steep precipitation gradient. The ISME Journal. 4:553–563. doi: 10.1038/ismej.2009.136
  • Azarbad H, van Gestel CAM, Niklińska M, Laskowski R, Röling WFM, van Straalen NM. 2016. Resilience of soil microbial communities to metals and additional stressors: DNA-based approaches for assessing ‘stress-on-stress’ responses. International Journal of Molecular Sciences. 17:933. http://doi.org/10.3390/ijms17060933.
  • Azcón-Aguilar C, Barea JM. 1997. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza. 6:457–464. doi: 10.1007/s005720050147
  • Balser TC, Firestone MK. 2005. Linking microbial community composition and soil processes in a Californian annual grassland and mixed-conifer forest. Biogeochemistry. 73:395–415. doi: 10.1007/s10533-004-0372-y
  • Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N. 2011. Examining the global distribution of dominant archaeal populations in soil. The ISME Journal. 5:908–917. doi: 10.1038/ismej.2010.171
  • Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, Fierer N. 2012. Global biogeography of highly diverse protistan communities in soil. The ISME Journal. 7:652–659. doi: 10.1038/ismej.2012.147
  • Bardgett RD, van der Putten WH. 2014. Belowground biodiversity and ecosystem functioning. Nature. 515:505–511. doi: 10.1038/nature13855
  • Beare MH, Hu S, Coleman DC, Hendrix PF. 1997. Influences of mycelial fungi on soil aggregation and organic matter storage in conventional and no-tillage systems. Applied Soil Ecology. 5:211–219. doi: 10.1016/S0929-1393(96)00142-4
  • Bintrim SB, Donohue TJ, Handelsman J, Roberts GP, Goodman RM. 1997. Molecular phylogeny of archaea from soil. Proceedings of the National Academy of Sciences USA. 94:277–282. doi: 10.1073/pnas.94.1.277
  • Bissett A, Richardson AE, Baker G, Wakelin S, Thrall PH. 2010. Life history determines biogeographical patterns of soil bacterial communities over multiple spatial scales. Molecular Ecology. 19:4315–4327. doi: 10.1111/j.1365-294X.2010.04804.x
  • Bonanomi G, Antignani V, Capodilupo M, Scala F. 2010. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biology and Biochemistry 42:136–144. doi: 10.1016/j.soilbio.2009.10.012
  • Bossio DA, Scow KM, Gunapala N, Graham KJ. 1998. Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microbial Ecology. 1:1–12. doi: 10.1007/s002489900087
  • Bowatte S, Brock S, Newton PCD. 2009. Detection of ammonia oxidising archaea (AOA) in New Zealand soils. New Zealand Journal of Agricultural Research. 52:179–183. doi: 10.1080/00288230909510502
  • Brevik EC, Sauer TJ. 2015. The past, present, and future of soils and human health studies. Soil 1, 35–46. doi:10.5194/soil-1-35-2015.
  • Buckley DH, Graber JR, Schmidt TM. 1998. Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Applied and Environmental Microbiology. 64:4333–4339.
  • Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, et al. 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 488:7409. doi: 10.1038/nature11336
  • Bünemann EK, Schwenke GD, Van Zwieten L. 2006. Impact of agricultural inputs on soil microorganisms – a review. Australian Journal of Soil Research. 44:379–406. doi: 10.1071/SR05125
  • Cao P, Zhang LM, Zheng YM, Di HJ, He JZ. 2012. Distribution and diversity of archaeal communities in selected Chinese soils. FEMS Microbiology Ecology. 80:146–158. doi: 10.1111/j.1574-6941.2011.01280.x
  • Caradus JR, Woodfield DR, Stewart AV. 1996. Overview and vision for white clover. Grasslands Research and Practice Series. 6:1–6.
  • Cavigelli MA, Robertson GP. 2000. The functional significance of denitrifier community composition in a terrestrial ecosystem. Ecology. 81:1402–1414. doi: 10.1890/0012-9658(2000)081[1402:TFSODC]2.0.CO;2
  • Coleman DC, Whitman WB. 2005. Linking species richness, biodiversity and ecosystem function in soil systems. Pedobiologia. 49:479–497. doi: 10.1016/j.pedobi.2005.05.006
  • Colloff MJ, Wakelin SA, Gomez D, Rogers SL. 2008. Detection of nitrogen cycle genes in soils for measuring the effects of changes in land use and management. Soil Biology and Biochemistry. 40:1637–1645. doi: 10.1016/j.soilbio.2008.01.019
  • Crowther TW, Bradford MA. 2013. Thermal acclimation in widespread heterotrophic soil microbes. Ecology Letters. 16:469–4677. doi: 10.1111/ele.12069
  • Curtis TP, Sloan WT, Scannell JW. 2002. Estimating prokaryotic diversity and its limits. Proceedings of the National Academy of Sciences USA. 99:10494–10499. doi: 10.1073/pnas.142680199
  • Deng Y, Jiang Y-H, Yang Y, He Z, Luo F, Zhou J. 2012. Molecular ecological network analyses. BMC Bioinformatics. 13:113. doi: 10.1186/1471-2105-13-113
  • Di H, Cameron KC. 2002. Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutrient Cycling in Agroecosystems. 64:237–256. doi: 10.1023/A:1021471531188
  • Di H, Cameron KC, Shen JP, Winefield CS, O’Callaghan M, Bowatte S, He JZ. 2009. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geosciences. 2:621–624. doi: 10.1038/ngeo613
  • Dignam BEA, O'Callaghan M, Condron LM, Raaijmakers JM, Kowalchuk GA, Wakelin SA. 2015. A bioassay to compare the disease suppressive capacity of pasture soils. New Zealand Plant Protection. 68:151–159.
  • Dignam BEA, O'Callaghan M, Condron LM, Raaijmakers JM, Kowalchuk GA, Wakelin SA. 2016. Challenges and opportunities in harnessing soil disease suppressiveness for sustainable pasture production. Soil Biology and Biochemistry. 95:100–111. doi: 10.1016/j.soilbio.2015.12.006
  • Dirzo R, Raven PH. 2003. Global state of biodiversity and loss. Annual Review of Environment and Resources. 28:137–167. doi: 10.1146/annurev.energy.28.050302.105532
  • Drew EA, Denton MD, Sadras VO, Ballard RA. 2012. Agronomic and environmental drivers of population size and symbiotic performance of Rhizobium leguminosarum bv. viciae in Mediterranean-type environments. Crop and Pasture Sciences. 63:467–477. doi: 10.1071/CP12032
  • Eilers KG, Lauber CL, Knight R, Fierer N. 2010. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biology & Biochemistry. 42:896–903. doi: 10.1016/j.soilbio.2010.02.003
  • Fierer N. 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology. 15:579–590. doi: 10.1038/nrmicro.2017.87
  • Fierer N, Bradford MA, Jackson RB. 2007. Toward an ecological classification of soil bacteria. Ecology. 88:1354–1364. doi: 10.1890/05-1839
  • Fierer N, Jackson RB. 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences USA. 103:626–631. doi: 10.1073/pnas.0507535103
  • Fierer N, McCain CM, Meir P, Zimmermann M, Rapp JM, Silman MR, et al. 2011. Microbes do not follow the elevational diversity patterns of plants and animals. Ecology. 92:797–804. doi: 10.1890/10-1170.1
  • Focht DD, Verstraete W. 1977. Biochemical ecology of nitrification and denitrification. Advances in Microbial Ecology. 1:134–214.
  • Garbeva P, van Veen JA, van Elsas JD. 2004. Microbial diversity in soil: selection of microbial populations by plant and soil type. Annual Review of Phytopathology. 42:243–270. doi: 10.1146/annurev.phyto.42.012604.135455
  • Garrett SD. 1963. Soil fungi and soil fertility. London: Pergamon Press Ltd.
  • Gaur YD, Lowther WL. 1980. Distribution, symbiotic effectiveness, and fluorescent antibody reaction of naturalised populations of Rhizobium trifolii in Otago soils. New Zealand Journal of Agricultural Research. 23:529–532. doi: 10.1080/00288233.1980.10417878
  • Giller PS. 1996. The diversity of soil communities, the ‘poor man’s tropical rainforest’. Biodiversity and Conservation. 5:135–168. doi: 10.1007/BF00055827
  • Hannula SE, de Boer W, van Veen J. 2012. A 3-year study reveals that plant growth stage, season and field site affect soil fungal communities while cultivar and GM-trait have minor effects. PLoS ONE. 7:e33819. doi: 10.1371/journal.pone.0033819
  • Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. 2012. Beyond biogeographic patterns: processes shaping the microbial landscape. Nature Reviews Microbiology. 10:497–506. doi: 10.1038/nrmicro2795
  • Harris K, Young IM, Gilligan CA, Otten W, Ritz K. 2003. Effect of bulk density on the spatial organisation of the fungus Rhizoctonia solani in soil. FEMS Microbiology Ecology. 44:45–56. doi: 10.1111/j.1574-6941.2003.tb01089.x
  • Harvey IC, Harvey BM. 2009. Pasture diseases in New Zealand. Lincoln: Bio-Protection Research Centre; p. 144.
  • He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC, Huang Z, Wu W, Gu B, Jardine P, et al. 2007. Geochip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. The ISME Journal. 1:67–77. doi: 10.1038/ismej.2007.2
  • Hendrix PF, Parmelee RW, Crossley DA, Coleman DC, Odum EP, Groffman PM. 1986. Detritus food webs in conventional and non-till agroecosystems. BioScience. 36:374–380. doi: 10.2307/1310259
  • Henriksen TM, Breland TA. 1999. Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil. Soil Biology and Biochemistry. 31:1121–1134. doi: 10.1016/S0038-0717(99)00030-9
  • Jackobsen I, Abbott LK, Robson AD. 1992. External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytologist. 120:371–380. doi: 10.1111/j.1469-8137.1992.tb01077.x
  • Jangid K, Williams MA, Franzluebers AJ, Schmidt TM, Coleman DC, Whiteman WB. 2011. Land-use history has a stronger impact on soil microbial community composition than above ground vegetation and soil properties. Soil Biology & Biochemistry. 43:2184–2193. doi: 10.1016/j.soilbio.2011.06.022
  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E. 2002. Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza. 12:225–234. doi: 10.1007/s00572-002-0163-z
  • Jenkinson DS. 1977. The soil microbial biomass. New Zealand Soil News. 25:213–218.
  • Klemm D, Heublein B, Fink H-P, Bohn A. 2005. Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition. 44:3358–3393. doi: 10.1002/anie.200460587
  • Kowalchuk GA, Stephen JR. 2001. Ammonia-oxidising bacteria: a model for molecular microbial ecological research. Annual Review of Microbiology. 55:485–529. doi: 10.1146/annurev.micro.55.1.485
  • Kucey RMN. 1983. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Canadian Journal of Soil Science. 63:671–678. doi: 10.4141/cjss83-068
  • Kuramae EE, Yergeau E, Wong LC, Pijl AS, van Veen JA, Kowalchuk GA. 2012. Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiology Ecology. 79:12–24. doi: 10.1111/j.1574-6941.2011.01192.x
  • Lauber CL, Hamady M, Knight R, Fierer N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology. 75:5111–5120. doi: 10.1128/AEM.00335-09
  • Lauber CL, Strickland MS, Bradford MA, Fierer N. 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry. 40:2407–2415. doi: 10.1016/j.soilbio.2008.05.021
  • Laughlin RJ, Stevens RJ. 2002. Evidence for fungal dominance of denitrification and codenitrification in a grassland soil. Soil Science Society of America Journal. 66:1540–1548. doi: 10.2136/sssaj2002.1540
  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C. 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature. 442:806–809. doi: 10.1038/nature04983
  • Lowther WL, Kerr GA. 2011. White clover seed inoculation and coating in New Zealand. Proceeding of the New Zealand Grasslands Association. 73:93–102.
  • Mander C, Wakelin S, Young S, Condron L, O'Callaghan M. 2012. Incidence and diversity of phosphate-solubilising bacteria are linked to phosphorus status in grassland soils. Soil Biology & Biochemistry. 44:93–101. doi: 10.1016/j.soilbio.2011.09.009
  • Marschner H, Dell B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil. 159:89–102. doi: 10.1007/BF00000098
  • Marschner P, Yang CH, Lieberei R, Crowley DE. 2001. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology & Biochemistry. 33:1437–1445. doi: 10.1016/S0038-0717(01)00052-9
  • Mazzola M. 2004. Assessment and management of soil microbial community structure for disease suppression. Annual Review of Phytopathology. 42:35–59. doi: 10.1146/annurev.phyto.42.040803.140408
  • Mazzola M. 2007. Manipulation of rhizosphere bacterial communities to induce suppressive soils. Journal of Nematology 39:213–220.
  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100. doi: 10.1126/science.1203980
  • Mertens J, Broos K, Wakelin SA, Kowalchuk GA, Springael D, Smolders E. 2009. Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. The ISME Journal. 3:916–923. doi: 10.1038/ismej.2009.39
  • Millard P, Singh BK. 2010. Does grassland vegetation drive soil microbial diversity? Nutrient Cycling in Agroecosystems. 88:147–158. doi: 10.1007/s10705-009-9314-3
  • Ministry for Primary Industries 2017 Mar. Situation and outlook for primary industries. Wellington; 30 p.
  • Myrold DD, Zeglin LH, Jansson JK. 2014. The potential of metagenomic approaches for understanding soil microbial processes. Soil Science Society of America Journal. 78:3–10. doi: 10.2136/sssaj2013.07.0287dgs
  • Nannipieri P, Pietramellara G, Renella G. 2014. Omics in soil science. Norfolk: Caister Academic Press; 198 p.
  • Nesme J, Achouak W, Agathos S, Bailey M, Baldrian P, Brunel D, Frostegard A, Heulin T, Jansson JK, Jurkevitch E, et al. 2016. Back to the future of soil metagenomics. Frontiers in Microbiology. 7:533. doi: 10.3389/fmicb.2016.00073
  • Nicol GW, Glover A, Prosser JI. 2003. Molecular analysis of methanogenic archaeal communities in managed and natural upland pasture soils. Global Change Biology. 9:1451–1457. doi: 10.1046/j.1365-2486.2003.00673.x
  • Pester M, Bittner N, Deevong P, Wagner M, Loy A. 2010. A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland. The ISME Journal. 4:1591–1602. doi: 10.1038/ismej.2010.75
  • Philippot L, Spor A, Hénault C, Bru D, Bizouard F, Jones CM, Sarr A, Maron P-A. 2013. Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal. 7:1609–1619. doi: 10.1038/ismej.2013.34
  • Raaijmakers JM, Mazzola M. 2016. Soil immune responses. Science. 352:1392–1393. doi: 10.1126/science.aaf3252
  • Reith F, Brugger J, Zammit CM, Gregg AL, Goldfarb KC, Andersen GL, DeSantis TZ, Piceno YM, Brodie EL, Lu Z, et al. 2012. Influence of geogenic factors on microbial communities in metallogenic Australian soils. The ISME Journal. 6:2107–2118. doi: 10.1038/ismej.2012.48
  • Robertson GP, Klingensmith KM, Klug MJ, Paul EA, Crum JR, Ellis BG. 1997. Soil resources, microbial activity, and primary production across an agricultural ecosystem. Ecological Applications. 7:158–170. doi: 10.1890/1051-0761(1997)007[0158:SRMAAP]2.0.CO;2
  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal. 4:1340–1351. doi: 10.1038/ismej.2010.58
  • Sessitsch A, Howieson JG, Perret X, Antoun H, Martínez-Romero E. 2002. Advances in rhizobium research. Critical Reviews in Plant Science. 21:323–378. doi: 10.1080/0735-260291044278
  • Schimel JP, Gulledge J. 1998. Microbial community structure and global trace gases. Global Change Biology. 4:74–758. doi: 10.1046/j.1365-2486.1998.00195.x
  • Schimel JP, Schaeffer SM. 2012. Microbial control over carbon cycling in soil. Frontiers in Microbiology. 3: Article 348. doi: 10.3389/fmicb.2012.00348
  • Schloss PD, Handelsman J. 2006. Toward a census of bacteria in soil. PLoS Computational Biology. 2:e92. doi: 10.1371/journal.pcbi.0020092
  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, et al. 2011. Persistence of soil organic matter as an ecosystem property. Nature. 478:49–56. doi: 10.1038/nature10386
  • Shoun H, Kim D-H, Uchiyama H, Sugiyama J. 1992. Denitrification by fungi. FEMS Microbiology Letters. 94:277–282. doi: 10.1111/j.1574-6968.1992.tb05331.x
  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G. 2001. Bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Applied and Environmental Microbiology. 67:4742–4751. doi: 10.1128/AEM.67.10.4742-4751.2001
  • Statistics New Zealand. 2012 Jun 30. Agricultural areas in hectares, by usage and region. http://www.stats.govt.nz/browse_for_stats/industry_sectors/agriculture-horticulture-forestry/2012-agricultural-census-tables/land-use.aspx.
  • Steffan JJ, Brevik EC, Burgess LC, Cerdà A. 2017. The effect of soil on human health: an overview. European Journal of Soil Science. doi:10.1111/ejss.12451.
  • Strickland MS, Lauber C, Fierer N, Bradford MA. 2009. Testing the functional significance of microbial community composition. Ecology. 90:441–451. doi: 10.1890/08-0296.1
  • Štursová M, Žifčáková L, Leigh MB, Burgess R, Baldrian P. 2012. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiology Ecology. 80:735–746. doi: 10.1111/j.1574-6941.2012.01343.x
  • Torsvik V, Øvreås L, Thingstad TF. 2002. Prokaryotic diversity – magnitude, dynamics, and controlling factors. Science. 296:1064–1066. doi: 10.1126/science.1071698
  • Ueda T, Suga Y, Matsuguchi T. 1995. Molecular phylogenetic analysis of a soil microbial community in a soybean field. European Journal of Soil Science. 46:415–421. doi: 10.1111/j.1365-2389.1995.tb01337.x
  • Valentine DL. 2007. Adaptations to energy stress dictate the ecology and evolution of archaea. Nature Reviews Microbiology. 5:316–323. doi: 10.1038/nrmicro1619
  • van Straalen NM, Roelofs D. 2006. An introduction to ecological genomics. Oxford University Press; p. 320.
  • Vogel TM, Simonet P, Jansson JK, Hirsch PR, Tiedje JM, van Elsas JD, Bailey MJ, Nalin R, Philippot L. 2009. Terragenome: a consortium for the sequencing of a soil metagenome. Nature Reviews Microbiology. 7:252. doi: 10.1038/nrmicro2119
  • Wakelin SA, Barratt BIP, Gerard E, Gregg AL, Brodie EL, Andersen GL, DeSantis TZ, Zhou J, He Z, Kowalchuk GA, O’Callaghan M. 2013. Shifts in the phylogenetic structure and functional capacity of soil microbial communities follow alteration of native tussock grassland ecosystems. Soil Biology & Biochemistry. 57:675–682. doi: 10.1016/j.soilbio.2012.07.003
  • Wakelin SA, Cave VM, Dignam BE, D’Ath C, Tourna M, Condron LM, Zhou J, Nostrand JD V, O’Callaghan M. 2016. Analysis of soil eDNA functional genes: potential to increase profitability and sustainability of pastoral agriculture. New Zealand Journal of Agricultural Research. 59:333–350. doi: 10.1080/00288233.2016.1209529
  • Wakelin SA, Colloff MJ, Harvey PR, Marschner P, Gregg AL, Rogers SL. 2007. The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigated maize. FEMS Microbiology Ecology. 59:661–670. doi: 10.1111/j.1574-6941.2006.00235.x
  • Wakelin S, Eslami Y, Dake K, Dignam B, O’Callaghan M. 2016. Cost of root disease on white clover growth in New Zealand dairy pastures. Australasian Plant Pathology. 45:289–296. doi: 10.1007/s13313-016-0411-x
  • Wakelin SA, Gregg AL, Simpson RJ, Li GD, Riley IT, McKay AC. 2009. Pasture management clearly affects soil microbial community structure and N-cycling bacteria. Pedobiologia. 52:237–251. doi: 10.1016/j.pedobi.2008.10.001
  • Wakelin SA, MacDonald LM, O’Callaghan M, Forrester ST, Condron LM. 2013. Soil functional resistance and stability are linked to different ecosystem properties. Austral Ecology. 39:522–531. doi: 10.1111/aec.12112
  • Wakelin SA, Macdonald LM, Rogers SL, Gregg AL, Bolger TP, Baldock JA. 2008. Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biology and Biochemistry. 40:803–813. doi: 10.1016/j.soilbio.2007.10.015
  • Wakelin SA, van Koten C, O’Callaghan M, Brown M. 2013. Physicochemical properties of 50 New Zealand pasture soils: a starting point for assessing and managing soil microbial resources. New Zealand Journal of Agricultural Research. 56:248–260. doi: 10.1080/00288233.2013.822003
  • Waldrop MP, Balser TC, Firestone MK. 2000. Linking microbial community composition to function in a tropical soil. Soil Biology & Biochemistry. 32:1837–1846. doi: 10.1016/S0038-0717(00)00157-7
  • Weller DM, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology. 40:309–348. doi: 10.1146/annurev.phyto.40.030402.110010
  • Wheeler KA, Hurdman BF, Pitt JI. 1991. Influence of pH on the growth of some toxigenic species of Aspergillus, Penicillium and Fusarium. International Journal of Food Microbiology. 12:141–150. doi: 10.1016/0168-1605(91)90063-U
  • Whitelaw MA. 2000. Growth promotion of plants inoculated with phosphate solubilizing fungi. Advances in Agronomy. 69:99–151. doi: 10.1016/S0065-2113(08)60948-7
  • Zak DR, Pregitzer KS, Burton AJ, Edwards IP, Kellner H. 2011. Microbial response to a changing environment: implications for the future functioning of terrestrial ecosystems. Fungal Ecology. 4:386–395. doi: 10.1016/j.funeco.2011.04.001
  • Zydenbos S, Townsend RJ, Lane PMS, Mansfield S, O’Callaghan M, van Koten C, Jackson TA. 2016. Effect of Serratia entomophila and diazinon applied with seed against grass grub populations on the North Island volcanic plateau. New Zealand Plant Protection. 69:86–93.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.