4,345
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Methane reduction, health and regulatory considerations regarding Asparagopsis and bromoform for ruminants

ORCID Icon & ORCID Icon
Received 30 May 2023, Accepted 14 Aug 2023, Published online: 28 Aug 2023

References

  • Abbott W, Aasen IA, Beauchemin KA, Grondahl F, Gruninger R, Hayes M, Huws S, Kenny DA, Krizsan SJ, Kirwan SF, et al. 2020. Seaweed and seaweed bioactives for mitigation of enteric methane: challenges and opportunities. Animals. 10(12):2432. doi:10.3390/ani10122432.
  • Agency for Toxic Substances and Disease Registry (ATSDR). 1990. Toxicological Profile for Bromoform and Chlorodibromomethane. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.
  • Ahmed AE, Kubic VL, Anders MW. 1977. Metabolism of haloforms to carbon monoxide. I. In vitro studies. Drug Metab Dispos. 5:198–204.
  • Al-Adilah H, Feiters MC, Carpenter LC, Kumari P, Carrano CJ, Al-Bader D, Kuepper F. 2022. Halogens in seaweeds: biological and environmental significance. Phycology. 2:132–171. doi:10.3390/phycology2010009.
  • Alvarez-Hess PS, Jacobs JL, Kinley RD, Roque BM, Neachtain AS, Chandra S, Williams SR. 2023. Twice daily feeding of canola oil steeped with Asparagopsis armata reduced methane emissions of lactating dairy cows. Anim Feed Sci Technol. 297:115579. doi:10.1016/j.anifeedsci.2023.115579.
  • Andreen DM, Billman ED, Brito AF, Soder KJ. 2023. Effect of incremental amounts of Asparagopsis taxiformis on ruminal fermentation and methane production in continuous culture with orchardgrass herbage. Anim Feed Sci Technol. doi:10.1016/j.anifeedsci.2023.115641.
  • Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep MR. 2006. Marine natural products. Nat Prod Rep. 23:26–78. doi:10.1039/b502792f.
  • Bowman FJ, Borcelleca JF, Munson AE. 1978. The toxicity of some halomethanes in mice. Toxicol Appl Pharmacol. 44:213–215. doi:10.1016/0041-008X(78)90300-9.
  • Brown VK. 1980. Acute toxicity in theory and practice. Chichester/New York, NY: Wiley; p. 159.
  • Casarett LJ, Doull J. 2013. Casarett and Doull's toxicology: the basic science of poisons. Klaassen CD, editor. 8th ed. New York (NY): McGraw-Hill Education. ISBN 978-0-07-176923-5.
  • Chu I, Secours V, Marino I, Villeneuve DC. 1980. The acute toxicity of four trihalomethanes in male and female rats. Toxicol Appl Pharmacol. 52(2):351–353. doi:10.1016/0041-008X(80)90122-2.
  • Chu I, Villeneuve DC, Secours VE, Becking GC, Valli VE. 1982. Trihalomethanes: II reversibility of toxicological changes produced by chloroform, bromodichloromethane, chlorodibromomethane and bromoform in rats. J Environ Sci Health Part B. 17(3):225–240. doi:10.1080/03601238209372315.
  • Class T, Kohnle R, Ballschmiter K. 1986. Chemistry of organic traces in air: bromo- and bromochloroethanes in air over the Atlantic Ocean. Chemosphere. 15:429–436. doi:10.1016/0045-6535(86)90536-9.
  • Condie LW, Smallwood CL, Laurie RD. 1983. Comparative renal and hepatotoxicity of halomethanes: bromodichloromethane, bromoform, chloroform, dibromochloromethane and methylene chloride. Drug Chem Toxicol. 6(6):563–578. doi:10.3109/01480548309017810.
  • Coroneo V, Coroneo V, Marras B, Marrucci A, Succa S, Meloni B, Pinna A, Angioni A, Sanna A, Schintu M. 2017. Presence of trihalomethanes in ready-to-eat vegetables disinfected with chlorine. Food Addit. Contam. Part A. 34:2111–2117. doi: 10.1080/19440049.2017.1382723
  • De Bhowmick G, Hayes M. 2023. Potential of seaweeds to mitigate production of greenhouse gases during production of ruminant proteins. Global Chall. 7(5):2200145. doi: 10.1002/gch2.202200145
  • Delvaux NA, de Queiroz MELR, Neves AA, Oliveira AF, da Silva MRF, Faroni LRA, Heleno FF. 2017. Headspace solid phase microextraction-gas chromatography for the determination of trihalomethanes in fish. Microchem J. 133:539–544. doi:10.1016/j.microc.2017.04.019.
  • Dijkstra J, Bannink A, France J, Kebreab E, van Gastelen S. 2018. Short communication: antimethanogenic effects of 3-nitrooxypropanol depend on supplementation dose, dietary fiber content, and cattle type. J Dairy Sci. 101:9041–9047. doi:10.3168/jds.2018-14456.
  • Du Plessis M, Möller I, Liebenberg L. 2020. Double rarity: an unusual case of bromoform poisoning detected by post-mortem radiography. Int J Legal Med. 134:703–708. doi:10.1007/s00414-019-02032-1.
  • Eason CT. 2018. Connections between rodenticides & drugs: a review of natural compounds with ecological, biocidal & medical applications. NZ J Zool. 45(1):1–12. doi:10.1080/03014223.2017.1348956.
  • Eason CT, Bonner FW, Parke DV. 1990. The importance of pharmacokinetic and receptor studies in drug safety evaluation. Regul Toxicol Pharmacol. 11(3):288–307. doi:10.1016/0273-2300(90)90028-A.
  • Eason CT, O’Halloran K. 2002. Biomarkers in toxicology versus ecological risk assessment. Toxicology. 181-182:517–521. doi:10.1016/S0300-483X(02)00472-9.
  • Eason CT, Shapiro L, Ogilvie S, King C, Clout M. 2017. Trends in the development of mammalian pest control technology in New Zealand. NZ J Zool. 44(4):267–304. doi:10.1080/03014223.2017.1337645.
  • EC (European Council). 2020. Directive (EU) 2020/2184 of the European Parliament and of the council of 16 December 2020 on the quality of water intended for human consumption (recast). OJ L. 435:1–62.
  • Evlampidou I, Font-Ribera L, Rojas-Rueda D, Gracia-Lavedan E, Costet N, Pearce N, Vineis P, Jaakkola JJK, Delloye F, Makris KC, et al. 2020. Trihalomethanes in drinking water and bladder cancer burden in the European Union. Environ Health Perspect. 128(1):17001. doi:10.1289/EHP4495.
  • Faust RA. 1995. Toxicology Profiles. Formal Toxicity Summary for Bromoform. The Risk Assessment Information System. Chemical Hazard Evaluation Group, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, Oak Ridge, Tennessee. No longer available (previously https://rais.ornl.gov/tox/profiles/bromoform).
  • Fennessy PF, Proctor LE, Muetzel S. in preparation. Methane mitigation in sheep – response to Asparagopsis.
  • Firkins JL, Mitchell KE. 2023. Rumen modifiers in today's dairy rations. J Dairy Sci. doi:10.3168/jds.2022-22644.
  • Fortner HJ. 1978. The Limu Eater: a cookbook of Hawaiian seaweed. HI: University of Hawaii Sea Grant College Program.
  • Glasson CR, Kinley RD, de Nys R, King N, Adams SL, Packer MA, Svenson J, Eason CT, Magnusson M. 2022. Benefits and risks of including the bromoform containing seaweed asparagopsis in feed for the reduction of methane production from ruminants. Algal Res. 64:102673. doi:10.1016/j.algal.2022.102673.
  • Goodwin KD, North WJ, Lidstrom ME. 1997. Production of bromoform and dibromomethane by Giant Kelp: factors affecting release and comparison to anthropogenic bromine sources. Limnol Oceanogr. 42(8):1725–1734. doi:10.4319/lo.1997.42.8.1725.
  • Gribble GW. 1999. The diversity of naturally occurring organobromine compounds. Chem Soc Rev. 28(5):335–346. doi:10.1039/a900201d.
  • Gribble GW. 2000. The natural production of organobromine compounds. Environ Sci Pollut Res Int. 7(1):37–49. doi:10.1065/espr199910.002.
  • Gschwend PM, MacFarlane JK, Newman KA. 1985. Volatile halogenated organic compounds released to seawater from temperate marine macroalgae. Science. 227:1033–1035. doi:10.1126/science.227.4690.1033.
  • Helte E, Säve-Söderbergh S, Ugge H, Fall K, Larsson S, Åkesson A. 2022. Chlorination by-products in drinking water and risk of bladder cancer – A population-based cohort study. Water Res. 214:118202. doi:10.1016/j.watres.2022.118202.
  • Hladik ML, Hubbard LE, Kolpin DW, Focazio MJ. 2016. Dairy-impacted wastewater is a source of iodinated disinfection byproducts in the environment. Environ Sci Technol Lett. 3(5):190–193. doi:10.1021/acs.estlett.6b00109.
  • Huang AT, Batterman S. 2009. Formation of trihalomethanes in foods and beverages. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 26(7):947–957. doi:10.1080/02652030902897739.
  • International Agency for Research on Cancer (IARC). 1991. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 52.
  • Jia Y, Quack B, Kinley RD, Pisso I, Tegtmeier S. 2022. Potential environmental impact of bromoform from asparagopsis farming in Australia. Atmos Chem Phys. 22(11):7631–7646. doi:10.5194/acp-22-7631-2022.
  • Kargalioglu Y, McMillan B, Minear R, Plewa M. 2002. Analysis of the cytotoxicity and mutagenicity of drinking water disinfection by-products in Salmonella typhimurium. Teratogenesis, Carcinogenesis and Mutagenesis. 22(2):113–128. doi: 10.1002/tcm.10010
  • Keng FSL, Phang SM, Rahman A, Leedham EC, Gill M, Sturges WT. 2020. The emission of volatile halocarbons by seaweeds and their response towards environmental changes. J Appl Phycol. 32(2):1377–1394. doi:10.1007/s10811-019-02026-x.
  • Keng FSL, Phang SM, Rahman NA, Leedham EC, Hughes C, Robinson AD, Harris NRP, Pyle JA, Sturges WT. 2013. Volatile halocarbon emissions by three tropical brown seaweeds under different irradiances. J. Appl. Phycol. 25:1377–1386. doi:10.1007/s10811-013-9990-x.
  • Kinley RD, Martinez-Fernandez G, Matthews MK, de Nys R, Magnusson M, Tomkins NW. 2020. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J Clean Prod. 259:120836. doi:10.1016/j.jclepro.2020.120836.
  • Lean IJ, Golder HM, Grant TMD, Moate PJ. 2021. A meta-analysis of effects of dietary seaweed on beef and dairy cattle performance and methane yield. PLoS One. 16(7):e0249053. doi: 10.1371/journal.pone.0249053
  • Li X, Norman HC, Kinley RD, Laurence M, Wilmot M, Bender H, de Nys R, Tomkins N. 2018. Asparagopsis taxiformis decreases enteric methane production from sheep. Anim Prod Sci. 58(4):681–688. doi:10.1071/AN15883.
  • Liu H, Wang J, Wang A, Chen J. 2011. Chemical inhibitors of methanogenesis and putative applications. Appl Microbiol Biotechnol. 89:1333–1340. doi:10.1007/s00253-010-3066-5.
  • Loh ZH, Ouwerkerk D, Klieve AV, Hungerford NL, Fletcher MT. 2020. Toxin degradation by rumen microorganisms: a review. Toxins. 12(10):664. doi:10.3390/toxins12100664.
  • Lucas GHW. 1928. A study of the fate and toxicity of bromine and chlorine containing anesthetics. J Pharmacol. 34:223–237.
  • Machado L, Magnusson M, Paul NA, de Nys R, Tomkins N. 2014. Effects of marine and freshwater macroalgae on in-vitro total gas and methane production. PloS One. 9(1):e85289. doi:10.1371/journal.pone.0085289.
  • Magnusson M, Vucko MJ, Neoh TL, de Nys R. 2020. Using oil immersion to deliver a naturally-derived, stable bromoform product from the red seaweed Asparagopsis taxiformis. Algal Res. 51:102065. doi:10.1016/j.algal.2020.102065.
  • Malloy MJ, Kane JP. 2018. Agents used in dyslipidemia. In: Katzung BG, Masters SB, Trevor AJ, editors. Basic and clinical pharmacology. 12th ed. New York, NY: McGraw-Hill Medical; Chapter 35.
  • Ministry of Health (MoH). 2016. Guidelines for drinking-water quality management for New Zealand. Wellington: MoH.
  • Mink FL, Brown TJ, Rickabaugh J. 1986. Absorption, distribution, and excretion of 14C-trihalomethanes in mice and rats. Bull Environ Contam Toxicol. 37(5):752–758. doi:10.1007/BF01607835.
  • Muizelaar W, Groot M, van Duinkerken G, Peters R, Dijkstra J. 2021. Safety and transfer study: transfer of bromoform present in Asparagopsis taxiformis to milk and urine of lactating dairy cows. Foods. 10(3):584. doi:10.3390/foods10030584.
  • Muñoz-Tamayo R, Chagas JC, Ramin M, Krizsan SJ. 2021. Modelling the impact of the macroalgae Asparagopsis taxiformis on rumen microbial fermentation and methane production. Peer Community J. 1: article (e7). doi:10.24072/pcjournal.11.
  • Munson AE, Sain LE, Sanders VM, et al. 1982. Toxicology of organic drinking water contaminants: trihalomethane, bromodichloromethane, dibromochloromethane and tribromomethane. Environ. Health Perspect. 46:117–126. doi:10.1289/ehp.8246117.
  • Nelson WA, Neill K, D’Archino R, Rolfe JR. 2019. Conservation status of New Zealand macroalgae. Dept of Conservation. New Zealand Threat Classification Series 30.
  • Nokes CJ. 1999. Disinfection by-products in New Zealand drinking waters: occurrence, controlling factors and management. ESR Client Report FW9978.
  • NTP (National Toxicology Program). 1989. Toxicology and Carcinogenesis Studies of Tribromomethane (Bromoform) (CAS No. 75-25-2) in F344/N Rats and B6C3F1 Mice (Gavage Studies). U.S. Department of Health and Human Services. NTP Technical Report Series No. 350. https://ntp.niehs.nih.gov/.
  • On S, Cressey P, Vannort R. 2008. Compounds formed during chlorinated wash of chicken meat. ESR Client Report FW0833.
  • Parra P, Martinez E, Sunol C, Artigas F, Tusell JM, Gelpl E, Albaiges J. 1986. Analysis, accumulation and central effects of trihalomethanes. I. Bromoform. Toxicol Environ Chem. 11:79–91. doi:10.1080/02772248609357122.
  • Patra A, Park T, Kim M, Yu Z. 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J Anim Sci Biotechnol. 8:13. doi:10.1186/s40104-017-0145-9.
  • Paul NA, Cole L, de Nys R, Steinberg PD. 2006. Ultrastructure of the gland cells of the red alga Asparagopsis armata (Bonnemaisoniaceae). J Phycol. 42:637–645. doi:10.1111/j.1529-8817.2006.00226.x.
  • Pukui MK, Elbert SH. 2003. “Lookup of kohu”. In Hawaiian Dictionary. Ulukau, the Hawaiian Electronic Library, University of Hawaii Press.
  • Quivet E, Höhener P, Temime-Roussel B, Dron J, Revenko G, Verlande M, Lebaron K, Demales C, Vassalo L, Boudenne JL. 2022. Underestimation of anthropogenic bromoform released into the environment? Environ Sci Technol. 56(3):1522–1533. doi:10.1021/acs.est.1c05073.
  • Risher J, Jones D, Lumpkin M. 2005. Toxicological profile for bromoform and dibromochloromethane. Atlanta, GA: Public Health Service: Agency for Toxic Substances and Disease Registry.
  • Roque BM, Salwen JK, Kinley R, Kebreab E. 2019. Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. J Clean Prod. 234:132–138. doi:10.1016/j.jclepro.2019.06.193.
  • Roque BM, Venegas M, Kinley R, de Nys R, Duarte T, Yang X, Salwen J, Kebreab E. 2021. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS One. 16(3):e0247820. doi:10.1371/journal.pone.0247820.
  • Roskam E, Kirwan SF, Kenny DA, O’Donnell C, O’Flaherty V, Hayes M, Waters SM. 2022. Effect of brown and green seaweeds on diet digestibility, ruminal fermentation patterns and enteric methane emissions using the rumen simulation technique. Front Anim Sci. 3. doi:10.3389/fanim.2022.1021631.
  • Rozman K, Hanninen O. 1986. Gastrointestinal toxicology. Amsterdam/New York: Elsevier Science Publishers; p. 543.
  • Ruddick JA, Villeneuve DC, Chu I. 1983. A teratological assessment of four trihalomethanes in the rat. J Env Sci Health. 18:333–349. doi:10.1080/03601238309372373.
  • Ryan S, Gleeson D, Jordan K, Furey A, O’Brien B. 2012. Evaluation of trichloromethane formation from chlorine-based cleaning and disinfection agents in cow’s milk. Int J Dairy Technol. 65(4):498–502. doi:10.1111/j.1471-0307.2012.00858.x.
  • Sawyer MS, Hoover WH, Sniffen CJ. 1974. Effects of a ruminal methane inhibitor on growth and energy metabolism in the ovine. Journal of Animal Science. 38(4):908–914. doi:10.2527/jas1974.384908x.
  • Shibazaki A, Ambiru K, Kurihara M, Tamegai H, Hashimoto S. 2016. Phytoplankton as a temperate marine source of brominated methanes. Marine Chemistry. 181:44–50. doi:10.1016/j.marchem.2016.03.004.
  • Sigma-Aldrich. 2024. Safety data sheet bromoform version 6.7 revision date 07.03.2024 print date 24.03.2024. https://www.sigmaaldrich.com/NZ/en/sds/aldrich/241032.
  • Stefenoni HA, Räisänen SE, Cueva SF, Wasson DE, Lage CFA, Melgar A, Fetter ME, Smith P, Hennessy M, Vecchiarelli B et al. 2021. Effects of the macroalga Asparagopsis taxiformis and oregano leaves on methane emission, rumen fermentation, and lactational performance of dairy cows. J Dairy Sci. 104 (4) doi:10.3168/jds.2020-19686.
  • Stevens JL, Anders MW. 1979. Metabolism of haloforms to carbon monoxide - III. Studies on the mechanism of the reaction. Biochemical Pharmacology. 28:3189–3194. doi:10.1016/0006-2952(79)90060-1.
  • Stevens JL, Anders MW. 1981. Metabolism of haloforms to carbon monoxide. IV. Studies on the reaction mechanism in vivo. Chem Biol Interact. 37:365–374. doi:10.1016/0009-2797(81)90121-6.
  • Sturges W, Cota G, Buckley P. 1992. Bromoform emission from Arctic ice algae. Nature. 358:660–662. doi:10.1038/358660a0.
  • Sturges WT, Cota GF, Buckley PT. 1997. Vertical profiles of bromoform in snow, sea ice, and seawater in the Canadian Arctic. J Geophys Res Ocean. 102:25073–25083. doi:10.1029/97JC01860.
  • Timbrell J, Barile FA. 2023. Introduction to toxicology. 4th ed. Boca Raton: CRC Press; p. 316 doi:10.1201/9781003188575.
  • Tomkins NW, Colegate SM, Hunter RA. 2009. A bromochloromethane formulation reduces enteric methanogenesis in cattle fed grain-based diets. Anim Prod Sci. 49(12):1053–1058. doi:10.1071/EA08223.
  • Ungerfeld EM. 2022. Opportunities and hurdles to the adoption and enhanced efficacy of feed additives towards pronounced mitigation of enteric methane emissions from ruminant livestock. Methane. 1(4):262–285. doi:10.3390/methane1040021.
  • Ungerfeld EM, Beauchemin KA, Muñoz C. 2022. Current perspectives on achieving pronounced enteric methane mitigation from ruminant production. Front Anim Sci. 2:795200. doi:10.3389/fanim.2021.795200.
  • United States Department of Health and Human Services. 1993. Hazardous substances data bank (HSDB, online database). National Toxicology Information Program, National Library of Medicine, Bethesda, MD.
  • United States Environmental Protection Agency. 1989. http://water.epa.gov/resource_performance/performance/upload/OW_End_of_Year_BPFY2012_Report.pdf [accessed 2022 June].
  • United States Environmental Protection Agency. 2017. Integrated risk information system (IRIS) on Bromoform. National Center for Environmental Assessment, Washington, D.C.
  • Vaskoska RS. 2021. Raising a need for a risk assessment of bromoform transferred from feed to food. In: Food legal bulletin. Lawmedia Pty Ltd. https://www.foodlegal.com.au/inhouse/document/2440?print = true.
  • von Oettingen WF. 1955. Bromoform. In: The Halogenated Aliphatic, Olefinic, Cyclic, Aromatic, and Aliphatic-Aromatic Hydrocarbons Including the Halogenated Insecticides, their Toxicity and Potential Dangers. U.S. Department of Health, Education and Welfare, Public Health Service, Washington, DC. USPHS Publ. No. 414, pp. 65-67.
  • Vucko MJ, Magnusson M, Kinley RD, Villart C, De Nys R. 2017. The effects of processing on the in vitro antimethanogenic capacity and concentration of secondary metabolites of Asparagopsis taxiformis. J Appl Phycol. 29:1577–1586. doi: 10.1007/s10811-016-1004-3
  • Wheeler T, Major R, Ogilvie S, South P, Romanazzi D, Adams S. 2021. Building a seaweed sector: developing a seaweed sector framework for Aotearoa New Zealand. Report for Sustainable Seas National Science Challenge. Project code. 2.5:45.
  • WHO. 2012. Joint FAO/WHO expert meeting on dietary exposure assessment methodologies for residues of veterinary drugs: final report including report of stakeholder meeting. WHO, Geneva.
  • WHO. 2022. Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda. Geneva: WHO.
  • Zhang X, Han Y, Huang W, Mingi J, Gao Z. 2021. The influence of gut microbiota on the bioavailability of oral drugs. Acta Pharm Sin B. 11(7):1789–1812. doi:10.1016/j.apsb.2020.09.013.