2,904
Views
22
CrossRef citations to date
0
Altmetric
Research articles

The onset of the Early Eocene Climatic Optimum at Branch Stream, Clarence River valley, New Zealand

, , , , &
Pages 262-280 | Received 25 Sep 2014, Accepted 25 May 2015, Published online: 17 Sep 2015

References

  • Agnini C, Fornaciari E, Raffi I, Rio D, Röhl U, Westerhold T 2007. High-resolution nannofossil biochronology of middle Paleocene to early Eocene at ODP Site 1262: Implications for Calcareous nannoplankton evolution. Marine Micropaleontology 64: 215–248. doi: 10.1016/j.marmicro.2007.05.003
  • Agnini C, Macrì P, Backman J, Brinkhuis H, Fornaciari E, Giusberti L et al. 2009. An early Eocene carbon cycle perturbation at c. 52.5 Ma in the Southern Alps: Chronology and biotic response. Paleoceanography 24: PA2209. doi: 10.1029/2008PA001649
  • Arthur MA, Dean WE, Bottjer D, Scholle P 1984. Rhythmic bedding in Mesozoic-Cenozoic pelagic carbonate sequences: The primary and diagenetic origin of Milankovitch-like cycles. In: Berger A, Imbire J, Hays J, Kukla G, Saltzman B et al. eds. Milankovitch and climate: understanding the response to astronomical forcing. NATO ASI Series C: Mathematical and Physical Sciences. Palisades, NY, D. Reidel Publishing Company. Pp. 126, 191–222.
  • Beerling DJ, Royer DL 2011. Convergent Cenozoic CO2 history. Nature Geoscience 4: 418–420. doi: 10.1038/ngeo1186
  • Berggren WA, Kent DV, Swisher CC III, Aubry M-P 1995. A revised Cenozoic geochronology and chronostratigraphy. In: Berggren WA, Kent DV, Aubry M-P, Hardenbol J eds. Geochronology, time scales and global stratigraphic correlation. SEPM Special Publication 54: 129–212.
  • Berggren WA, Pearson PN 2005. A revised tropical to subtropical Paleogene planktonic foraminiferal zonation. The Journal of Foraminiferal Research 35: 279–298. doi: 10.2113/35.4.279
  • Bijl PK, Schouten S., Sluijs A, Reichart G-J, Zachos JC, Brinkhuis H 2009. Early Palaeogene temperature evolution of the southwest Pacific Ocean. Nature 461: 776–779. doi: 10.1038/nature08399
  • Burgess CE, Pearson PN, Lear CH, Morgans EGH, Handley L, Pancost RD, Schouten S 2008. Middle Eocene climate cyclicity in the southern Pacific: implications for global ice volume. Geology 36: 651–654. doi: 10.1130/G24762A.1
  • Chanton JP, Lewis FG 1999. Plankton and dissolved inorganic carbon isotopic composition in a river-dominated estuary: Apalachicola Bay, Florida. Estuaries 22: 575–583. doi: 10.2307/1353045
  • Charles AJ, Condon DJ, Harding IC, Pälike H, Marshall JEA, Cui Y et al. 2011. Constraints on the numerical age of the Paleocene–Eocene boundary. Geochemistry Geophysics Geosystems 12: Q0AA17. doi: 10.1029/2010GC003426
  • Coccioni R, Bancalà G, Catanzarit R, Fornaciari E, Frontalini F, Giusberti L et al. 2012. An integrated stratigraphic record of the Palaeocene–Lower Eocene at Gubbio (Italy): new insights into the early Palaeogene hyperthermals and carbon isotope excursions. Terra Nova 24: 380–386. doi: 10.1111/j.1365-3121.2012.01076.x
  • Cooper RA 2004. The New Zealand geological timescale. Lower Hutt, Institute of Geological and Nuclear Sciences. Institute of Geological and Nuclear Sciences Monograph 22. 284 p.
  • Corfield RM, Cartlidge JE 1992. Oceanographic and climatic implications of the Palaeocene carbon isotope maximum. Terra Nova 4: 443–455. doi: 10.1111/j.1365-3121.1992.tb00579.x
  • Cramer BS, Wright JD, Kent DV, Aubry M-P 2003. Orbital climate forcing of δ13C excursion in the late Paleocene-early Eocene (chrons C24n-C25n). Paleoceanography 18: 1097. doi: 10.1029/2003PA000909
  • Crampton J, Laird M, Nicol A, Townsend D, Van Dissen R 2003. Palinspastic reconstructions of southeastern Marlborough, New Zealand, for mid-Cretaceous-Eocene times. New Zealand Journal of Geology and Geophysics 46: 153–175. doi: 10.1080/00288306.2003.9515002
  • Creech JB, Baker JA, Hollis CJ, Morgans HEG, Smith EGC 2010. Eocene sea temperatures for the mid-latitude southwest Pacific from Mg/Ca ratios in planktonic and benthic foraminifera. Earth and Planetary Science Letters 299: 483–495. doi: 10.1016/j.epsl.2010.09.039
  • Dallanave E, Agnini C, Bachtadse V, Muttoni G, Crampton JS, Percy Strong C et al. 2014. Early to middle Eocene magneto-biochronology of the southwest Pacific Ocean and climate influence on sedimentation: insights from the Mead Stream Section, New Zealand. GSA Bulletin 127: 643–660. doi: 10.1130/B31147.1
  • Dickens GR 2011. Down the rabbit hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events. Climate of the Past 7: 831–846. doi: 10.5194/cp-7-831-2011
  • Dickens GR, Backman J 2013. Core alignment and composite depth scale for the lower Paleogene through uppermost Cretaceous interval at Deep Sea Drilling Project Site 577. Newsletters on Stratigraphy 46: 47–68. doi: 10.1127/0078-0421/2013/0027
  • Dickens GR, Castillo MM, Walker JCG 1997. A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25: 259–262. doi: 10.1130/0091-7613(1997)025<0259:ABOGIT>2.3.CO;2
  • Dingle RV, Lavelle M 1998. Late Cretaceous–Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review. Palaeogeography, Palaeoclimatology, Palaeoecology 141: 215–232. doi: 10.1016/S0031-0182(98)00056-X
  • Dunn DA 1980. Revised techniques for quantitative calcium carbonate analysis using the “Karbonat-Bombe,” and comparisons to other quantitative carbonate analysis methods. Journal of Sedimentary Research 50: 631–636. doi: 10.2110/jsr.50.631
  • Eder W 1982. Diagenetic redistribution of carbonate, a process in forming limestone-marl alternations (Devonian and Carboniferous, Rheinisches Schiefergebirge, W. Germany). In: Einsele G, Seilacher A eds. Cyclic and event stratification. Berlin, Springer. Pp. 98–112.
  • Frank TD, Arthur MA, Dean WE 1999. Diagenesis of Lower Cretaceous pelagic carbonates, North Atlantic: paleoceanographic signals obscured. Journal of Foraminiferal Research 29: 340–351.
  • Giusberti L, Rio D, Agnini C, Backman J, Fornaciari E, Tateo F et al. 2007. Mode and tempo of the Paleocene-Eocene thermal maximum in an expanded section from the Venetian pre-Alps. Geological Society of America Bulletin 119: 391–412. doi: 10.1130/B25994.1
  • Gradstein FM, Ogg J, JG Schmitz MD, Ogg GM 2012. The geologic time scale 2012. Oxford, Elsevier.
  • Hallam A 1964. Origin of limestone–shale rythm in the Blue Lias of England: a composite theory. The Journal of Geology 72: 157–169. doi: 10.1086/626974
  • Hallam A 1986. Origin of minor limestone–shale cycles: climatically induced or diagenetic? Geology 14: 609–612. doi: 10.1130/0091-7613(1986)14<609:OOMLCC>2.0.CO;2
  • Hancock HJL, Dickens GR, Percy Strong C, Hollis CJ, Field BD 2003. Foraminiferal and carbon isotope stratigraphy through the Paleocene-Eocene transition at Dee Stream, Marlborough, New Zealand. New Zealand Journal of Geology and Geophysics 46: 1–19. doi: 10.1080/00288306.2003.9514992
  • Hedges JI, Keil RG, Benner R 1997. What happens to terrestrial organic matter in the ocean? Organic Geochemistry 27: 195–212. doi: 10.1016/S0146-6380(97)00066-1
  • Held IM, Soden BJ 2006. Robust responses of the hydrological cycle to global warming. Journal of Climate 19: 5686–5699. doi: 10.1175/JCLI3990.1
  • Hilgen FJ, Kuiper KF, Lourens LJ 2010. Evaluation of the astronomical time scale for the Paleocene and earliest Eocene. Earth and Planetary Science Letters 300: 139–151. doi: 10.1016/j.epsl.2010.09.044
  • Hollis CJ, Beu AG, Crampton JS, Crundwell MP, Morgans HEG, Raine JI, et al. 2010. Calibration of the New Zealand Cretaceous–Cenozoic Timescale to GTS2004. GNS Science Report 2010/43. Lower Hutt, GNS Science. 20 p.
  • Hollis CJ, Dickens GR, Field BD, Jones CM, Percy Strong C 2005a. The Paleocene–Eocene transition at Mead Stream, New Zealand: a southern Pacific record of early Cenozoic global change. Palaeogeography, Palaeoclimatology, Palaeoecology 215: 313–343. doi: 10.1016/j.palaeo.2004.09.011
  • Hollis CJ, Field BD, Jones CM, Percy Strong C, Wilson GJ, Dickens GR 2005b. Biostratigraphy and carbon isotope stratigraphy of uppermost Cretaceous-lower Cenozoic Muzzle Group in middle Clarence valley, New Zealand. Journal of the Royal Society of New Zealand 35: 345–383. doi: 10.1080/03014223.2005.9517789
  • Hollis CJ, Handley L, Crouch EM, Morgans HEG, Baker JA, Creech J et al. 2009. Tropical sea temperatures in the high-latitude south Pacific during the Eocene. Geology 37: 99–102. doi: 10.1130/G25200A.1
  • Hollis CJ, Taylor KWR, Handley L, Pancost RD, Huber M, Creech JB et al. 2012. Early Paleogene temperature history of the Southwest Pacific Ocean: reconciling proxies and models. Earth and Planetary Science Letters 349–350: 53–66. doi: 10.1016/j.epsl.2012.06.024
  • Hollis CJ, Rodgers KA, Percy Strong C, Field BD, Rogers KM 2003. Paleoenvironmental changes across the Cretaceous/Tertiary boundary in the northern Clarence Valley, southeastern Marlborough, New Zealand. New Zealand Journal of Geology and Geophysics 46: 209–234. doi: 10.1080/00288306.2003.9515005
  • Hornibrook NDB 1992. New Zealand Cenozoic marine paleoclimates: a review based on the distribution of some shallow water and terrestrial biota. In: Tsuchi R, Ingle JC eds. Pacific Neogene: environment, evolution and events. Tokyo, University of Tokyo Press. Pp. 83–106.
  • Hornibrook NDB, Brazier RC, Percy Strong C 1989. Manual of New Zealand Permian to Pleistocene foraminiferal biostratigraphy. Lower Hutt, New Zealand Geological Survey Paleontological Bulletin. Pp. 1–56.
  • Hudson JD 1977. Stable isotopes and limestone lithification. Journal of the Geological Society 133: 637–660. doi: 10.1144/gsjgs.133.6.0637
  • John CM, Bohaty SM, Zachos JC, Sluijs A, Gibbs S, Brinkhuis H et al. 2008. North American continental margin records of the Paleocene–Eocene thermal maximum: implications for global carbon and hydrological cycling. Paleoceanography 23: PA2217. doi: 10.1029/2007PA001465
  • Kennett JP, Stott LD 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 353: 225–229. doi: 10.1038/353225a0
  • Koch PL, Zachos JC, Gingerich PD 1992. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature 358: 319–322. doi: 10.1038/358319a0
  • Komar N, Zeebe RE, Dickens GR 2013. Understanding long-term carbon cycle trends: The late Paleocene through the early Eocene. Paleoceanography 28: 1–13. doi: 10.1002/palo.20060
  • Kump LR, Arthur MA, 1999. Interpreting carbon-isotope excursions: carbonates and organic matter. Chemical Geology 161: 181–198. doi: 10.1016/S0009-2541(99)00086-8
  • Lawrence MJF 1989. Chert and dolomite in the Amuri Limestone Group and Woolshed Formation, eastern Marlborough, New Zealand. Unpublished Ph.D. thesis. Christchurch, Department of Geology, University of Canterbury.
  • Leon-Rodriguez L, Dickens GR 2010. Constraints on ocean acidification associated with rapid and massive carbon injections: the early Paleogene record at ocean drilling program site 1215, equatorial Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 298: 409–420. doi: 10.1016/j.palaeo.2010.10.029
  • Littler K, Röhl U, Westerhold T, Zachos JC 2014. A high-resolution benthic stable-isotope record for the South Atlantic: implications for orbital-scale changes in Late Paleocene–Early Eocene climate and carbon cycling. Earth and Planetary Science Letters 401: 18–30. doi: 10.1016/j.epsl.2014.05.054
  • Lourens LJ, Sluijs A, Kroon D, Zachos JC, Thomas E, Röhl U et al. 2005. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435: 1083–1087. doi: 10.1038/nature03814
  • Lowenstein TK, Demicco RV 2006. Elevated Eocene atmospheric CO2 and its subsequent decline. Science 313: 1928. doi: 10.1126/science.1129555
  • Ludwig W, Probst J-L 1998. River sediment discharge to the oceans; present-day controls and global budgets. American Journal of Science 298: 265–295. doi: 10.2475/ajs.298.4.265
  • Matter A, Douglas RG, Perch-Nielsen K 1975. Fossil preservation, geochemistry and diagenesis of pelagic carbonates from Shatsky Rise, northwest Pacific. Initial Results of the Deep Sea Drilling Project 32: 891–922.
  • McInerney FA, Wing SL 2011. The Paleocene-Eocene thermal maximum: a perturbation of carbon cycle, climate, and biosphere with Implications for the future. Annual Review of Earth and Planetary Sciences 39: 489–516. doi: 10.1146/annurev-earth-040610-133431
  • Meehl GA, Covey C, Delworth T, Delworth T, Stouffer RJ, Latif M et al. 2007a. THE WCRP CMIP3 multimodel dataset: a new era in climate change research. Bulletin of the American Meteorological Society 88: 1383–1394. doi: 10.1175/BAMS-88-9-1383
  • Meehl GA, Stocker TF, Collins WD et al. 2007b. Global climate projections. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB et al. eds. Climate change 2007: the physical science basis. Contibution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press. Pp. 747–845.
  • Morris JC 1987. The stratigraphy of the Amuri Limestone Group, east Marlborough, New Zealand. Unpublished PhD thesis. Christchurch, Department of Geology, University of Canterbury.
  • Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M et al. 2004. Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430: 768–772. doi: 10.1038/nature02771
  • Nelson CS, Smith AM, 1996. Stable oxygen and carbon isotope compositional fields for skeletal and diagenetic components in New Zealand Cenozoic nontropical carbonate sediments and limestones: a synthesis and review. New Zealand Journal of Geology and Geophysics 39: 93–107. doi: 10.1080/00288306.1996.9514697
  • Nicolo MJ, Dickens GR, Hollis CJ, Zachos JC 2007. Multiple early Eocene Hyperthermals: Their sedimentary expression on the New Zealand continental margin and in the deep sea. Geology 35: 699–702. doi: 10.1130/G23648A.1
  • Pälike H, Lyle MW, Nishi H, Raffi I, Ridgwell A, Gamage K, Klaus A et al. 2012. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488: 609–615. doi: 10.1038/nature11360
  • Pancost RD, Taylor KWR, Inglis GN, Kennedy EM, Handley L, Hollis CJ et al. 2013. Early Paleogene evolution of terrestrial climate in the SW Pacific, Southern New Zealand. Geochemistry, Geophysics, Geosystems 14: 5413–5429. doi: 10.1002/2013GC004935
  • Peterson B, Fry B, Hullar M, Saupe S, Wright R 1994. The distribution and stable carbon isotopic composition of dissolved organic carbon in estuaries. Estuaries 17(1): 111–121. doi: 10.2307/1352560
  • Peterson BJ, Holmes RM, McClelland JW, Vörösmarty CJ, Lammers RB, Shiklomanov AI et al. 2002. Increasing river discharge to the Arctic Ocean. Science 298: 2171–2173. doi: 10.1126/science.1077445
  • Raine JI, Beu AG, Boyes AF, Campbell HJ, Cooper RA, Crampton JS et al. 2015. Revised calibration of the New Zealand Geological Timescale: NZGT2015/1. GNS Science Report 2012/39. Lower Hutt, GNS Science.
  • Rattenbury MS, Townsend DB, Johnstone MR (compilers) 2006. Geology of the Kaikoura area. GNS Science 1:250000 geological map 13. Lower Hutt, GNS Science. 70 p + map.
  • Reay MB 1993. Geology of the middle part of the Clarence Valley. Lower Hutt, Institute of Geological and Nuclear Sciences. Institute of Geological and Nuclear Sciences Geological Map 10: 1–144.
  • Ricken W 1986. Diagenetic bedding: a model for limestone-marl alternations. Lecture Notes in Earth Sciences 6: 1–4. doi: 10.1007/BFb0009735
  • Röhl U, Westerhold T, Monechi S, Thomas E, Zachos JC, Donner B 2005. The third and final early Eocene thermal maximum: characteristics, timing, and mechanisms of the ‘‘X’’ event. Geological Society of America Abstracts with Programs 37: 264.
  • Schmitz B, Pujalte V 2003. Sea-level, humidity, and land-erosion records across the initial Eocene thermal maximum from a continental-marine transect in northern Spain. Geology 31: 689–692. doi: 10.1130/G19527.1
  • Schmitz B, Pujalte V 2007. Abrupt increase in seasonal extreme precipitation at the Paleocene-Eocene boundary. Geology 35: 215–218. doi: 10.1130/G23261A.1
  • Scholle PA, Arthur MA 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. American Association of Petroleum Geologists Bulletin 64: 67–87.
  • Shackleton NJ 1986. Paleogene Stable Isotope Events. Palaeogeography, Palaeoclimatology, Palaeoecology 57: 91–102. doi: 10.1016/0031-0182(86)90008-8
  • Shackleton NJ, Hall MA, Bleil U 1985. Carbon isotope stratigraphy, site 577. In: Turner KL ed. Initial reports of the Deep Sea Drilling Project 86. Washington, US Government Printing Office. Pp. 503–511.
  • Slotnick BS, Dickens GR, Hollis CJ, Crampton JS, Percy Strong C, Zachos JC 2014. Extending lithologic and stable carbon isotope records at Mead Stream (New Zealand) through the Middle Eocene. In: Dickens GR, Luciani V eds. Climatic and biotic events of the Paleogene 2014 CBEP 2014 Volume 31. Roma, Società Geologica Italiana. Pp. 201–202.
  • Slotnick BS, Dickens GR, Nicolo MJ, Hollis CJ, Crampton JS, Zachos JC et al. 2012. Large-amplitude variations in carbon cycling and terrestrial weathering during the latest Paleocene and earliest Eocene: the record at mead stream, New Zealand. The Journal of Geology 120: 487–505. doi: 10.1086/666743
  • Slotnick BS, Lauretano V, Backman J, Dickens GR, Sluijs A, Lourens L 2015. Early Paleogene variations in the calcite compensation depth: new constraints using old borehole sediments from across Ninetyeast Ridge, central Indian Ocean. Climate of the Past 11: 473–493. doi: 10.5194/cp-11-473-2015
  • Sluijs A, Bijl PK, Schouten S, Röhl U, Reichert G-J, Brinkhuis H 2011. Southern Ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum. Climate of the Past 7: 47–61. doi: 10.5194/cp-7-47-2011
  • Sluijs A, Bowen G, Brinkhuis H, Lourens LJ, Thomas E 2007. The Palaeocene–Eocene thermal maximum super greenhouse: biotic and geochemical signatures, age models and mechanisms of global change. In: Williams M, Haywood AM, Gregory J, Schmidt DN eds. Deep-time perspectives on climate change: marrying the signal fromcomputer models and biological proxies. Special publication. London, Micropaleontological Society. Pp. 323–349.
  • Sluijs A, Dickens GR 2012. Assessing offsets between the δ13C of sedimentary components and the global exogenic carbon pool across early Paleogene carbon cycle perturbations. Global Biogeochemical cycles 26: GB4005. doi: 10.1029/2011GB004224
  • Spiker EC, Schemel LE 1979. Distribution and stable-isotope composition of carbon in San Francisco Bay. In: Conomos TJ ed. San Francisco Bay: the urbanized estuary: investigations into the natural history of San Francisco Bay and Delta with reference to the influence of man. San Francisco, CA, Academy of Sciences. Pp. 195–212.
  • Strong CP, Hollis CJ, Wilson GJ 1995. Foraminiferal, radiolarian, and dinoflagellate biostratigraphy of Late Cretaceous to Middle Eocene pelagic sediments (Muzzle Group), Mead Stream, Marlborough, New Zealand. New Zealand Journal of Geology and Geophysics 38: 171–209. doi: 10.1080/00288306.1995.9514649
  • Thomas E, Zachos JC 2000. Was the late Paleocene thermal maximum a unique event? GFF 122: 169–170. doi: 10.1080/11035890001221169
  • Vandenberghe N, Hilgen FJ, Speijer RP 2012. The Paleogene period. In: Gradstein F, Ogg J, Schmitz M, Ogg G eds. The Geologic Time Scale 2012. Amsterdam, Elsevier BV. Pp. 855–922.
  • Vodacek A, Blough NV, DeGrandpre MD, Peltzer ET, Nelson RK 1997. Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial Inputs and Photooxidation. Limnology and Oceanography 42: 674–686. doi: 10.4319/lo.1997.42.4.0674
  • West RM, Dawson MR 1978. Vertebrate Paleontology and the Cenozoic History of the North Atlantic Region. Polarforschung 48: 103–119.
  • Westerhold T, Röhl U 2009. High resolution cyclostratigraphy of the early Eocene – new insights into the origin of the Cenozoic cooling trend. Climate of the Past 5: 309–327. doi: 10.5194/cp-5-309-2009
  • Westerhold T, Röhl U, Laskar J 2012. Time scale controversy: accurate orbital calibration of the early Paleogene. Geochemistry, Geophysics, Geosystems 13: Q06015. doi: 10.1029/2012GC004096
  • Westerhold T, Röhl U, McCarren HK, Zachos JC 2009. Latest on the absolute age of the Paleocene–Eocene Thermal Maximum (PETM): new insights from exact stratigraphic position of key ash layers +19 and –17. Earth and Planetary Science Letters 287: 412–419. doi: 10.1016/j.epsl.2009.08.027
  • Westphal H, Hilgen F, Munnecke A 2010. An assessment of the suitability of individual rhythmic carbonate successions for astrochronological application. Earth Science Reviews 99: 19–30. doi: 10.1016/j.earscirev.2010.02.001
  • Willumsen PS 2011. Maastrichtian to Paleocene dinocysts from the Clarence Valley, South Island, New Zealand. Alcheringa 35: 199–240. doi: 10.1080/03115518.2010.494484
  • Wing SL, Bown TM, Obradovich JD 1991. Early Eocene biotic and climatic change in interior western North America. Geology 19: 1189–1192. doi: 10.1130/0091-7613(1991)019<1189:EEBACC>2.3.CO;2
  • Zachos JC, Dickens GR, Zeebe RE 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451: 279–283. doi: 10.1038/nature06588
  • Zachos JC, Kroon D, Blum P, Bowles J, Gaillot P, Hasegawa T, Hathorne EC et al. 2004. Proceedings of the Ocean Drilling Program, initial reports, volume 208. College Station, TX, Ocean Drilling Program.
  • Zachos JC, McCarren H, Murphy B, Röhl U, Westerhold T 2010, Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: Implications for the origin of hyperthermals. Earth and Planetary Science Letters 299: 242–249. doi: 10.1016/j.epsl.2010.09.004
  • Zachos JC, Pagani M, Sloan L, Thomas E, Billups K 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686–693. doi: 10.1126/science.1059412
  • Zeebe RE, Zachos JC, Dickens GR 2009. Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene thermal maximum warming. Nature Geoscience 2: 576–580. doi: 10.1038/ngeo578

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.