177
Views
0
CrossRef citations to date
0
Altmetric
Research articles

Landslides in the Transantarctic Mountains: lower Jurassic and older strata displaced in late Mesozoic to late Cenozoic time

Pages 407-421 | Received 04 Feb 2021, Accepted 10 May 2021, Published online: 03 Jun 2021

References

  • Ackert RP, Kurz MD. 2004. Age and uplift rates of Sirius Group sediments in the Dominion Range, Antarctica, from surface exposure dating and geomorphology. Global and Planetary Change. 42:207–225.
  • Ballantyne CK. 1990. The late Quaternary glacial history of the Trotternish Escarpment, Isle of Skye, Scotland, and its Implication for ice-Sheet Reconstruction. Proceedings of the Geologists’ Association. 101:171–186.
  • Barrett PJ. 1968. The post-glacial Permian and Triassic Beacon rocks in the Beardmore Glacier area, central Transantarctic Mountains, Antarctica [PhD dissertation]. Ohio State University, Columbus, Ohio. 510 pp.
  • Barrett PJ. 1991. The Devonian to Triassic Beacon Supergroup of the Transantarctic Mountains and correlatives in other parts of Antarctica. In: Tingey RJ, editor. The Geology of Antarctica. Oxford: Oxford University Press; Monographs on Geology and Geophysics, 17; p. 120–152.
  • Barrett PJ. 1996. Antarctic palaeoenvironment through Cenozoic times – a review. Terra Antarctica. 3(2):103–119.
  • Barrett PJ. 2013. Resolving views on Antarctic Neogene glacial history – the Sirius debate. Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 104:31–53. DOI:10.1017/S175569101300008X.
  • Barrett PJ, Elliot DH. 1973. Reconnaissance Geologic map of the Buckley Island Quadrangle, Transantarctic Mountains, Antarctica. United States Geological Survey, Antarctic Geologic Map A-3, 1:250000.
  • Barrett PJ, Elliot DH, Lindsay JF. 1986. The Beacon Supergroup (Devonian-Triassic) and Ferrar Group (Jurassic) in the Beardmore Glacier area, Antarctica. In: Turner MD, Splettstoesser JF, editors. Geology of the central Transantarctic Mountains. Vol. 36. Washington, DC: American Geophysical Union, Antarctic Research Series; p. 339–428.
  • Bialas RW, Buck WR, Studinger M, Fitzgerald PG. 2007. Plateau collapse model for the Transantarctic Mountains-West Antarctic rift system: insights from numerical experiments. Geology. 35:687–690.
  • Biek RF, Rowley PD, Hacker DB. 2019. The gigantic Markagunt and Sevier gravity slides resulting from mid-Cenozoic catastrophic mega-scale failure of the Marysvale volcanic field, Utah, USA. Boulder, CO: Geological Society of America, Field Guide 56.
  • Bo S, Siegert MJ, Mudd S, Sugden DE, Fujita S, Yuansheng L. 2009. The Gamburtsev Mountains and the origin and early evolution of the Antarctic Ice Sheet. Nature. 459:690–693. DOI:10.1038/nature08024.
  • Bradshaw MA. 1987. Additional field interpretation of the Jurassic sequence at Carapace Nunatak and Coombs Hills, south Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics. 30:37–49.
  • Bruno LA, Baur H, Graf T, Schluchter C, Signer P, Wieler R. 1997. Dating of Sirius Group tilllites in the Antarctic Dry Valleys with cosmogenic 3He and 21Ne. Earth and Planetary Science Letters. 147:37–54.
  • Burgess SD, Bowring SA, Fleming TH, Elliot DH. 2015. High precision geochronology links the Ferrar Large Igneous Province with early Jurassic ocean anoxia and biotic crisis. Earth and Planetary Science Letters. 415:90–99. DOI:10.1016/j.epsl.2015.01.037.
  • Deccesari RC, Wilson DS, Luyendyk BP, Faulkner M, et al. 2007. Cretaceous and Tertiary extension throughout the Ross Sea, Antarctica. In: Cooper AK, Raymond CR, editors. Antarctica: a keystone in a changing world. p. 1–6. On line proceedings of the 10th ISAES, U.S.G.S Open-File Report 2007- 1047, short research paper 098. DOI:10.3133/of2007-1047.srp098.
  • Denton GH, Prentice ML, Burckle LH. 1991. Cainozoic history of the Antarctic ice sheet. In: Tingey RJ, editor. The Geology of Antarctica. Oxford Monographs on Geology and Geophysics. 17; p. 365–433.
  • Denton GH, Sugden DE, Marchant DR, Hall BL, Wilch TI. 1993. East Antarctic ice sheet sensitivity to climate change from a Dry Valleys perspective. Geografiska Annaler. 75A(4):155–204.
  • Dickinson WW, Schiller M, Ditchburn BG, Graham IJ, Zondervan A. 2012. Meteoric Be-10 from Sirius Group suggests high elevation McMurdo Dry Valleys permanently frozen since 6Ma. Earth and Planetary Science Letters. 355–356:13–19.
  • Ditchfield PW, Marshall JD, Pirrie D. 1994. High latitude palaeotemperature variation: New data from the Tithonian to Eocene of James Ross Island. Palaeogeography, Palaeoclimatology, Palaeoecology. 107:79–101.
  • Elliot DH. 1970. Jurassic tholeiites of the central Transantarctic Mountains, Antarctica. In: Gilmour EH, Stradling D, editor. Proceedings of the Second Columbia River Basalt Symposium. Cheney, Washington, March 1969; p. 301–325.
  • Elliot DH. 1996. The Hanson formation: a new stratigraphical unit in the Transantarctic Mountains, Antarctica. Antarctic Science. 8:389–394.
  • Elliot DH. 2002. Toreva blocks in the Transantarctic Mountains: implications for Cenozoic paleoclimates. Geological Society of America, Abstracts with Programs. 34(6):239.
  • Elliot DH. 2013. The geological and tectonic evolution of the Transantarctic Mountains: a review. In: Hambrey MJ, Barker PF, Barrett PJ, Bowman V, Davies B, Smellie JL, Tranter M, editors. Antarctic palaeoenvironments and earth-surface processes. London: Geological Society of London; p. 7–35. DOI:10.1144/SP381.14.
  • Elliot DH, Fleming TH. 2008. Physical volcanology and geological relationships of the Ferrar Large Igneous Province, Antarctica. Journal of Volcanology and Geothermal Research. 172:20–37.
  • Elliot DH, Fleming TH. 2021. Ferrar Dolerite and Kirkpatrick Basalt formations II. Geochemistry. In: Smellie JL, editor. Volcanism in Antarctica: 200 million years of subduction, rifting and continental break-up. London: Geological Society of London. DOI:10.1144/M55.2018.44.
  • Elliot DH, Foland KA, Fleming TH. 2004. Dating paleohydrologic events with authigenic apophyllite: an example from the Permian of the central Transantarctic Mountains, Antarctica. Geological Society of America, Abstracts with Programs. 36(5):473.
  • Elliot DH, Hanson RE. 2001. Origin of widespread, exceptionally thick basaltic phreatomagmatic tuff breccia in the Middle Jurassic Prebble and Mawson formations, Antarctica. Journal of Volcanology and Geothermal Research. 111:183–201.
  • Elliot DH, Larsen D, Fanning CM, Fleming TH, Vervoort JD. 2017. The Lower Jurassic Hanson Formation of the Transantarctic Mountains: implications for the Antarctic sector of the Gondwana Plate margin. Geological Magazine. 154:777–803. DOI:10.1017/S0016756816000388.
  • Elliot DH, White JDL, Fleming TH. 2021. Ferrar Dolerite and Kirkpatrick basalt formations I. volcanology. In: Smellie JL, editor. Volcanism in Antarctica: 200 million years of subduction, rifting and continental break-up. London: Geological Society of London. DOI:10.1144/M55.2018.39.
  • Falcon-Lang HJ, Cantrill DJ, Nichols GH. 2001. Biodiversity and terrestrial ecology of a mid-Cretaceous, high-latitude floodplain, Alexander Island, Antarctica. Journal of the Geological Society of London. 158:709–724.
  • Fitzgerald PG. 1994. Thermochronologic constraints on post-Paleozoic tectonic evolution of the central Transantarctic Mountains, Antarctica. Tectonics. 13:634–662.
  • Fitzgerald PG. 2002. Tectonics and landscape evolution of the Antarctic Plate since the breakup of Gondwana, with an emphasis on the West Antarctic rift system and the Transantarctic Mountains. In: Gamble JA, Skinner DNB, Henrys S, editors. Antarctica at the close of a millennium. Vol. 35. Wellington, New Zealand: Bulletin of the Royal Society of New Zealand; p. 453–469.
  • Fitzgerald PG, Stump E. 1997. Cretaceous and Cenozoic episodic denudation of the Transantarctic Mountains, Antarctica: New constraints from apatite fission track thermochronology in the Scott Glacier region. Journal of Geophysical Research. 102:7747–7765. DOI:10.1029/96JB03898.
  • Fleming TH, Foland KA, Elliot DH. 1999. Apophyllite 40Ar/39Ar and Rb-Sr geochronology: potential utility and application to the timing of secondary mineralization of the Kirkpatrick Basalt, Antarctica. Journal of Geophysical Research. 104:20081–20095.
  • Francis JE, Ashworth A, Cantrill DJ, Crame JA, Howe J, Stephens R, Tosolini AM, Thorn V, et al. 2008. 100 million years of Antarctic climate evolution: evidence from fossil plants. In: Cooper AK, Raymond CR, editors. Antarctica: A keystone in a changing world. Proceedings of the 10th International Symposium on Antarctic Earth Sciences. Washington, DC: National Academies Press; p. 19–27.
  • Grunow AM, Kent DV, Dalziel IWD. 1987. Mesozoic evolution of West Antarctica and the Weddell Sea Basin: new paleomagnetic constraints. Earth and Planetary Science Letters. 86:16–26.
  • Grunow AM, Kent DV, Dalziel IWD. 1991. New paleomagnetic data from Thurston Island: implications for the tectonics of West Antarctica and Weddell Sea opening. Journal of Geophysical Research. 96:17935–17954.
  • Hacker DB, Biek RF, Rowley PD. 2014. Catastrophic emplacement of the gigantic Markagunt gravity slide, southwest Utah (USA): implications for hazards associated with sector collapse of volcanic fields. Geology. 42:943–946. DOI:10.1130/G35896.1.
  • Harwood DM. 1986. Diatom biostratigraphy and paleoecology with a Cenozoic history of Antarctic Ice sheets. [PhD dissertation]. Columbus (OH): Ohio State University, 592 pp.
  • Hewitt K, Clague JJ, Orwi JF. 2008. Legacies of catastrophic rock slope failures in mountain landscapes. Earth Science Reviews. 87:1–38. DOI:10.1016/j.earscirev.2007.10.002.
  • Huber M, Brinkhuis H, Stickley CE, Döös K, Sluijs A, Warnaar J, Schellenberg SA, Williams GL. 2004. Eocene circulation of the Southern Ocean: Was Antarctica kept warm by subtropical waters? Paleooceanography. 19:PA4026. DOI:10.1029/2004PA001014.
  • Huerta AD, et al. 2007. Byrd drainage system: evidence of a Mesozoic West Antarctic plateau. In: Cooper AK, Raymond CR, editors. Antarctica: A keystone in a changing world. p. 1–5. On line proceedings of the 10th ISAES, U.S.G.S Open-File Report 2007- 1047, extended abstract 091, 5p.
  • Jamieson SSR, Sugden DE, et al. 2008. Landscape evolution of Antarctica. In: Cooper AK, editor. Antarctica: A keystone in a changing world. Proceedings of the 10th International symposium on Antarctic Earth Sciences,. Washington, DC: National Academies Press; p. 39–54.
  • Klages JP, Salzmann U, Bickert T, Hillenbrand C-D, Gohl K, Kuhn G, Bohaty SM, Titschack J, Müller J, Frederichs T, et al. 2020. Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature. 580:81–86. DOI:10.1038/s41586-020-2148-5.
  • Korup O, Clague JJ, Hermanns RL, Hewitt K, Strom AL, Weidinger JT. 2007. Giant landslides, topography, and erosion. Earth and Planetary Science Letters. 261:578–589.
  • Lewis AR, Marchant DR, Ashworth AC, Hedenäs L, Hemming SR, Johnson JV, Leng MJ, Machlus ML, Newton AE, Raine JI, et al. 2008. Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proceedings of the National Academy of Sciences. 105:10676–10680.
  • Lewis AR, Marchant DR, Ashworth AC, Hemming SR, Machlus ML. 2007. Major middle Miocene climate change: evidence from East Antarctica and the Transantarctic Mountains. Bulletin of the Geological Society of America. 119:1449–1461.
  • Lisker F, Laufer AL. 2013. The Mesozoic Victoria Basin: vanished link between Antarctica and Australia. Geology. 41:1043–1046. DOI:10.1130/G33409.1.
  • Lisker F, Prenzel J, Laufer AL, Spiegel C. 2014. Recent thermochronological research in northern Victoria Land, Antarctica. Polarforschung. 84:59–66.
  • Marenssi SA. 2006. Eustatically controlled sedimentation recorded by Eocene strata of the James Ross Basin, Antarctica. In: Francis JE, Pirrie D, Crame JA, editors. Cretaceous-Tertiary high-latitude palaeoenvironments, James Ross Basin, Antarctica. London: Geological Society of London; p. 125–133.
  • McKay RM, Barrett PJ, Levy RS, Naish TR, Golledge NR, Pyne A. 2016. Antarctic Cenozoic climate history from sedimentary records: ANDRILL and beyond. Philosophical Transactions of the Royal Society. A374:20140301. DOI:10.1098/rsta.2014.0301.
  • Meyer ER, Harris RA. 2020. Discovery of the Baldy toreva near urban areas along the southern Wasatch Range, Utah. Rocky Mountain Geology. 55:55–73. DOI:10.24872/rmgjournal.55.1.55.
  • Miller S, Fitzgerald P, Baldwin S. 2010. Cenozoic range-front faulting and development of the Transantarctic Mountains near Cape Surprise, Antarctica: Thermochronologic and geomorphologic constraints. Tectonics. 29:TC1003. DOI:10.1029/2009TC002457.2010.
  • Paxman JG, Jamieson SSR, Ferracioli F, Bentley MJ, Ross N, Watts AB, Leitchenkov G, Armadillo E, Young DA. 2019a. The role of lithospheric flexure in the landscape evolution of the Wilkes Subglacial Basin and Transantarctic Mountains, East Antarctica. Journal of Geophysical Research: Earth Surface. 124:812–819. DOI:10.1029/2018JF004705.
  • Paxman JG, Jamieson SSR, Hochmuth K, Gohl K, Bentley MJ, Leitchenkov G, Ferracioli F. 2019b. Reconstructions of Antarctic topography since the Eocene-Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology. 525:109346. DOI:10.1016/j.palaeo.2019.109346.
  • Poole I, Cantrill D, Utescher TA. 2005. A multi-proxy approach to determine Antarctic terrestrial palaeoclimate during the late Cretaceous and early tertiary. Palaeogeography, Palaeoclimatology, Palaeoecology. 222:95–121.
  • Prentice ML, Denton GH, Lowell TV, Conway HC, Heusser LE. 1986. Pre-late Quaternary glaciation of the Beardmore Glacier region, Antarctica. Antarctic Journal of the United States. 21(5):95–98.
  • Pross J, Contreras L, Bijl PK, Greenwood DR, Bohaty SM, Schouten S, Bendle JA, Röhl U, Tauxe L, Raine JI, et al. 2012. Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature. 488:73–77. DOI:10.1038/nature11300.
  • Reiche P. 1937. Toreva-block – a distinctive landslide type. Journal of Geology. 45:538–548.
  • Rogers JD, Watkins C. 2007. Reconstruction of composite landslides in flat-lying sedimentary strata using balanced cross sections. Geological Society of America, Abstracts with Programs. 39(6):362–363.
  • Rogers JD, Watkins C. 2008. The role of overconsolidated shales in triggering megalandslides in the Grand Canyon region. Geological Society of America, Abstracts with Programs. 40(6):2.
  • Ross P-S, White JDL, McClintock MK. 2008. Geological evolution of the Coombs-Allan Hills area, Ferrar large igneous province, Antarctica: debris avalanche, mafic pyroclastic density currents, phreatocauldrons. Journal of Volcanology and Geothermal Research. 172:38–60.
  • Shackleton NJ, Kennett JP. 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP sites 277, 279, and 281. In: Kennett JP, Houtz R, editor. Initial Reports of the Deep Sea Drilling project. Vol. 29; p. 743–755.
  • Stump E. 1995. Ross Orogen of the transantarctic mountains. New York: Cambridge University Press. 284 pp.
  • Sugden DE, Denton GH, Marchant DR. 1995. Landscape evolution in the dry valleys, transantarctic mountains: tectonic implications. Journal of Geophysical Research. 100:9949–9967. DOI:10.1029/94JB02875.
  • Sugden DE, Jamieson SR. 2018. The pre-glacial landscape of Antarctica. Scottish Geographical Journal. 134:203–233. DOI:10.1080/14702541.2018.1535090.
  • Sugden DE, Summerfield MA, Denton GH, Wilch TI, McIntosh WC, Marchant DR, Rutford RH. 1999. Landscape development in the Royal Society Range, southern Victoria Land, Antarctica: stability since the mid-miocene. Geomorphology. 28:181–200.
  • Summerfield ME, Sugden DE, Denton GH, Marchant DR, Cockburn HAP, Stuart MF, et al. 1999. Cosmogenic isotope data support previous evidence of extremely low rates of denudation in the Dry Valleys region, southern Victoria Land, Antarctica. In: Smith BJ, editor. Uplift, erosion and stability: perspectives on long-term landscape development. London: Geological Society of London; p. 255–267.
  • Truswell EM, Macphail MK. 2009. Polar forests on the edge of extinction: what does the fossil spore and pollen evidence from East Antarctica say? Australian Systematic Botany. 22:57–106.
  • Veevers JJ. 2018. Gamburtsev subglacial mountains; age and composition from morainal clasts and U/Pb and Hf isotopic analysis of detrital zircons in the Lambert Rift, and potential provenance of east Gondwanaland sediments. Earth-Science Reviews. 180:206–257.
  • Watkins CM, Rogers JD. 2007. Overconsolidated shales and their role in triggering megalandslides in the Grand Canyon shales. Geological Society of America, Abstracts with Programs. 39(6):439.
  • Watkins CM, Rogers JD, Oboh-Ikuenobe F. 2004. Reconnaisance of megalandslides along the Vermilion Cliffs of the Colorado Plateau, Arizona. [updated 2015]. https://www.researchgate.net/publication/264883116.
  • Webb PN. 1972. Wright Fjord, Pliocene marine invasion of an Antarctic dry valley. Antarctic Journal of the United States. 7(6):226–234.
  • White JDL, McClintock MK. 2001. Immense vent complex marks flood-basalt eruption in a wet, failed rift: Coombs Hills, Antarctica. Geology. 29:935–938.
  • Wilch TJ, Lux DR, Denton GH, McIntosh WC. 1993. Minimal Pliocene-Pleistocene uplift of the dry valleys sector of the Transantarctic Mountains. Geology. 21:841–844. DOI:10.1130/0091-7613(1993)021.
  • Wilson DS, Jamieson SSR, Barrett PJ, Leitchenkov G, Gohl K, Larter RD. 2012. Antarctic topography at the Eocene-Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology. 335-336:24–34. DOI:10.1016/j.palaeo.2011.05.028.
  • Wilson DS, Pollard D, DeConto RM, Jamieson SSR, Luyendyk BP. 2013. Initiation of the West Antarctic Ice Sheet and estimates of total Antarctic ice volume in the earliest Oligocene. Geophysical Research Letters. 40:4305–4309. DOI:10.1002/grl.50797.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.