723
Views
6
CrossRef citations to date
0
Altmetric
Research articles

High contribution of methane in greenhouse gas emissions from a eutrophic lake: a mass balance synthesis

ORCID Icon, ORCID Icon, , ORCID Icon &
Pages 411-430 | Received 28 May 2020, Accepted 15 Jul 2020, Published online: 06 Aug 2020

References

  • Almeida RM, Nóbrega GN, Junger PC, Figueiredo AV, Andrade AS, de Moura CGB, Tonetta D, Oliveira ES, Araújo F, Rust F, et al. 2016. High primary production contrasts with intense carbon emission in a eutrophic tropical reservoir. Frontiers in Microbiology. 7(MAY):1–13.
  • APHA. 1998. Standard methods for the examination of water and wastewater. 20th ed. Washington (DC): APHA-AWWA-WEF.
  • Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K. 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment. 9(1):53–60.
  • Bastviken D. 2009. Methane. In: Likens GE, editor. Encycl inland waters. Oxford: Academic Press; p. 783–805. http://www.sciencedirect.com/science/article/pii/B9780123706263001174.
  • Bastviken D, Cole JJ, Pace ML, Van de-Bogert MC. 2008. Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions. Journal of Geophysical Research. 113(2):1–13.
  • Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A. 2011. Freshwater methane emissions offset the continental carbon sink. Science (80-). 331(6013):50.
  • Beaulieu JJ, DelSontro T, Downing JA. 2019. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nature Communications. 10(1):3–7. http://doi.org/10.1038/s41467-019-09100-5.
  • Beaulieu JJ, McManus MG, Nietch CT. 2016. Estimates of reservoir methane emissions based on a spatially balanced probabilistic-survey. Limnology and Oceanography. 61:S27–S40.
  • Cole JJ, Caraco NF. 1998. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnology and Oceanography. 43(4):647–656.
  • Cole JJ, Carpenter SR, Kitchell JF, Pace ML. 2002. Pathways of organic carbon utilization in small lakes: results from a whole-lake 13C addition and coupled model. Limnology and Oceanography. 47(6):1664–1675.
  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems. 10(1):171–184.
  • Connolly JP, Coffin RB. 1995. Model of carbon cycling in planktonic food webs. Journal of Environmental Engineering. 121(10):682–690.
  • Davidson TA, Audet J, Svenning JC, Lauridsen TL, Søndergaard M, Landkildehus F, Larsen SE, Jeppesen E. 2015. Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming. Global Change Biology. 21(12):4449–4463.
  • del Giorgio PA, Peters RH. 1993. Balance between Phytop ankton Produdion and P respiration in lakes. Canadian Journal of Fisheries and Aquatic Science. 50:282–289.
  • DelSontro T, Beaulieu JJ, Downing JA. 2018. Greenhouse gas emissions from lakes and impoundments: upscaling in the face of global change. Limnology and Oceanography Letters. 3: 64–75. http://doi.wiley.com/10.1002/lol2.10073.
  • DelSontro T, McGinnis DF, Sobek S, Ostrovsky I, Wehrli B. 2010. Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments. Environmental Science & Technology. 44(7):2419–2425. http://doi.org/10.1021/es9031369.
  • Downing J, Beaulieu J, DelSontro T. 2018. Delsontro, Beaulieu & Downing- files for SI- greenhouse gas emissions from lakes and impoundments: upscaling in the face of global change. Limnology and Oceanography Letters. http://doi.org/10.1002/lol2.10073. https://figshare.com/articles/dataset/DelSontro_Beaulieu_Downing-_files_for_SI-_Greenhouse_gas_emissions_from_lakes_and_impoundments_upscaling_in_the_face_of_global_change_CONFIDENTIAL-_FOR_REVIEW_PURPOSES_ONLY_/5220001
  • Downing JA, Cole JJ, Middelburg JJ, Striegl RG, Duarte CM, Kortelainen P, Prairie YT, Laube KA. 2008. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochemical Cycles. 22(1):1–10.
  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography. 51(5):2388–2397.
  • Dugan HA, Iestyn Woolway R, Santoso AB, Corman JR, Jaimes A, Nodine ER, Patil VP, Zwart JA, Brentrup JA, Hetherington AL, et al. 2016. Consequences of gas flux model choice on the interpretation of metabolic balance across 15 lakes. Inland Waters. 6(4):581–592.
  • Eugster W, Delsontro T, Sobek S. 2011. Eddy covariance flux measurements confirm extreme CH4emissions from a Swiss hydropower reservoir and resolve their short-term variability. Biogeosciences. 8(9):2815–2831.
  • Evans CD, Futter MN, Moldan F, Valinia S, Frogbrook Z, Kothawala DN. 2017. Variability in organic carbon reactivity across lake residence time and trophic gradients. Nature Geoscience. 10(11):832–835.
  • Fernández EJ, Peeters F, Hofmann H. 2014. Importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake. Environmental Science & Technology. 48(13):7297–7304. http://doi.org/10.1021/es4056164.
  • Forsyth DJ, Dryden SJ, James MR, Vincent WF. 1988. The Lake Okaro ecosystem 1. Background limnology. New Zealand Journal of Marine and Freshwater Research. 22(1):17–27. http://doi.org/10.1080/00288330.1988.9516274.
  • Gonzalez-Valencia R, Sepulveda-Jauregui A, Martinez-Cruz K, Hoyos-Santillan J, Dendooven L, Thalasso F. 2014. Methane emissions from Mexican freshwater bodies: correlations with water pollution. Hydrobiologia. 721(1):9–22.
  • Hamilton DP, McBride CG, Özkundakci D, Schallenberg M, Verburg P, de Winton M, Kelly D, Hendy C, Ye W. 2013. Effects of climate change on New Zealand lakes. In: Goldman C. R., Kumagai M., Robarts RD, editors. Climate change and inland waters: impacts and mitigation for ecosystem and societies. Hoboken, NJ: John Wiley & Sons, Ltd.; p. 337–366. https://doi.org/10.1002/9781118470596.ch19.
  • Hanson PC, Pace ML, Carpenter SR, Cole JJ, Stanley EH. 2015. Integrating landscape carbon cycling: research needs for resolving organic carbon budgets of lakes. Ecosystems. 18:363–375.
  • Hanson PC, Pollard AI, Bade DL, Predick K, Carpenter SR, Foley JA. 2004. A model of carbon evasion and sedimentation in temperate lakes. Global Change Biology. 10(8):1285–1298.
  • Harrell FEJ. 2015. Hmisc: Harrell miscellaneous. R Package Version. 3:15–10. http://cran.r-project.org/package=Hmisc.
  • Holgerson MA, Raymond PA. 2016. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience. 9(3):222–226. http://doi.org/10.1038/ngeo2654.
  • Huttunen JT, Alm J, Liikanen A, Juutinen S, Larmola T, Hammar T, Silvola J, Martikainen PJ. 2003. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere. 52(3):609–621.
  • Juutinen S, Rantakari M, Kortelainen P, Huttunen JT, Larmola T, Alm J, Silvola J, Martikainen PJ. 2009. Methane dynamics in different boreal lake types. Biogeosciences. 6(2):209–223.
  • Kankaala P, Taipale S, Nykänen H, Jones RI. 2007. Oxidation, efflux, and isotopic fractionation of methane during autumnal turnover in a polyhumic, boreal lake. Journal of Geophysical Research. 112(2):1–7.
  • Klump JV, Fitzgerald SA, Waples JT. 2009. Benthic biogeochemical cycling, nutrient stoichiometry, and carbon and nitrogen mass balances in a eutrophic freshwater bay. Limnology and Oceanography. 54(3):692–712.
  • Kuivila KM, Murray JW, Devol AH, Lidstrom ME, Reimers CE. 1988. Methane cycling in the sediments of Lake Washington. Limnology and Oceanography. 33(4):571–581.
  • Le Quéré C, Moriarty R, Andrew RM, Peters GP, Ciais P, Friedlingstein P, Jones SD, Sitch S, Tans P, Arneth A, et al. 2015. Global carbon budget 2014. Earth System Science Data. 7(1):47–85.
  • Lopes F, Viollier E, Thiam A, Michard G, Abril G, Groleau A, Prévot F, Carrias JF, Albéric P, Jézéquel D. 2011. Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France). Applied Geochemistry. 26(12):1919–1932. http://doi.org/10.1016/j.apgeochem.2011.06.021.
  • López Bellido J, Peltomaa E, Ojala A. 2011. An urban boreal lake basin as a source of CO2 and CH4. Environmental Pollution. 159(6):1649–1659. http://doi.org/10.1016/j.envpol.2011.02.042.
  • López Bellido J, Tulonen T, Kankaala P, Ojala A. 2009. CO2and CH4 fluxes during spring and autumn mixing periods in a boreal lake (Pääjärvi, southern Finland). Journal of Geophysical Research. 114(4):1–12.
  • Maberly SC, Barker PA, Stott AW, Ville D, Mitzi M. 2013. Catchment productivity controls CO2 emissions from lakes. Nature Climate Change. 3(4):391–394. http://doi.org/10.1038/nclimate1748.
  • Marcé R, Obrador B, Morguí J-A, Lluís Riera J, López P, Armengol J. 2015. Carbonate weathering as a driver of CO2 supersaturation in lakes. Nature Geoscience. 8(2):107–111. http://www.nature.com/doifinder/10.1038/ngeo2341.
  • Martinez D, Anderson MA. 2013. Methane production and ebullition in a shallow, artificially aerated, eutrophic temperate lake (Lake Elsinore, CA). Science of Total Environment. 454–455:457–465. http://doi.org/10.1016/j.scitotenv.2013.03.040.
  • McColl RHS. 1972. Chemistry and trophic status of seven New Zealand lakes. New Zealand Journal of Marine and Freshwater Research. 6(4):399–447.
  • McGinnis DF, Greinert J, Artemov Y, Beaubien SE, Wüest A. 2006. Fate of rising methane bubbles in stratified waters: how much methane reaches the atmosphere? Journal of Geophysical Research. 111(9):1–15.
  • Messager ML, Lehner B, Grill G, Nedeva I, Schmitt O. 2016. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature Communication. 7:13603. https://doi.org/10.1038/ncomms13603.
  • Moss B, Kosten S, Meerhof M, Battarbee R, Jeppesen E, Mazzeo N, Havens K, Lacerot G, Liu Z, de Meester L, et al. 2011. Allied attack: climate change and eutrophication. Inland Waters. 1(2):101–105.
  • Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, et al. 2013. 2013: Anthropogenic and natural radiative forcing. In: Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y. BV, Midgley PM, editor. Climate change 2013 physical science basis contribution of working group I to the fifth assessment report IPCC. Cambridge, UK and New York (NY), USA: Cambridge University Press; p. 659–740.
  • Nürnberg GK. 1996. Trophic state of clear and colored, soft- and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake and Reservoir Management. 12(4):432–447.
  • Ostrovsky I, Mcginnis DF, Lapidus L, Eckert W. 2008. Quantifying gas ebullition with echosounder: the role of methane transport by bubbles in a medium-sized lake. Limnology and Oceanography Methods. 6(2):105–118.
  • Özkundakci D, Hamilton DP, Gibbs MM. 2011. Hypolimnetic phosphorus and nitrogen dynamics in a small, eutrophic lake with a seasonally anoxic hypolimnion. Hydrobiologia. 661(1):5–20.
  • Paul WJ, Hamilton DP, Gibbs MM. 2008. Low-dose alum application trialled as a management tool for internal nutrient loads in Lake Okaro, New Zealand. New Zealand Journal of Marine and Freshwater Research. 42(2):207–217. http://doi.org/10.1080/00288330809509949.
  • Quay PD, Emerson SR, Quay BM, Devol AH. 1986. The carbon cycle for Lake Washington– a stable isotope study. Limnology and Oceanography. 31(3):596–611.
  • Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, et al. 2013. Global carbon dioxide emissions from inland waters. Nature. 503(7476):355–359. http://www.nature.com/doifinder/10.1038/nature12760.
  • R Core Team. 2019. R: A language and environment for statistical computing. https://www.r-project.org/.
  • Read JS, Hamilton DP, Jones ID, Muraoka K, Winslow LA, Kroiss R, Wu CH, Gaiser E. 2011. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environmental Modelling & Software. 26(11):1325–1336.
  • Regnier P, Friedlingstein P, Ciais P, Mackenzie FT, Gruber N, Janssens IA, Laruelle GG, Lauerwald R, Luyssaert S, Andersson AJ, et al. 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience. 6(8):597–607. http://www.nature.com/doifinder/10.1038/ngeo1830.
  • Riera JL, Schindler JE, Kratz TK. 1999. Seasonal dynamics of carbon dioxide and methane in two clear-water lakes and two bog lakes in northern Wisconsin, U.S.A. Canadian Journal of Fisheries and Aquatic Science. 274:1–10.
  • Santoso AB, Hamilton DP, Hendy CH, Schipper LA. 2017. Carbon dioxide emissions and sediment organic carbon burials across a gradient of trophic state in eleven New Zealand lakes. Hydrobiologia. 795(1):341–354.
  • Schilder J, Bastviken D, Van Hardenbroek M, Kankaala P, Rinta P, Stötter T, Heiri O. 2013. Spatial heterogeneity and lake morphology affect diffusive greenhouse gas emission estimates of lakes. Geophysical Research Letters. 40(21):5752–5756.
  • Schmid M, Ostrovsky I, McGinnis DF. 2017. Role of gas ebullition in the methane budget of a deep subtropical lake: what can we learn from process-based modeling? Limnology and Oceanography. 62(6):2674–2698. http://doi.wiley.com/10.1002/lno.10598.
  • Schubert CJ, Diem T, Eugster W. 2012. Methane emissions from a small wind shielded lake determined by eddy covariance, flux chambers, anchored funnels, and boundary model calculations: a comparison. Environmental Science & Technology. 46(8):4515–4522.
  • Simmonds B, Wood SA, Özkundakci D, Hamilton DP. 2015. Phytoplankton succession and the formation of a deep chlorophyll maximum in a hypertrophic volcanic lake. Hydrobiologia. 745(1):297–312.
  • Smith VH, Dodds WK, Havens KE, Engstrom DR, Paerl HW, Moss B, Likens GE. 2014. Comment: cultural eutrophication of natural lakes in the United States is real and widespread. Limnology and Oceanography. 59(6):2217–2225.
  • Sobek S, Durisch-Kaiser E, Zurbrügg R, Wongfun N, Wessels M, Pasche N, Wehrli B. 2009. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnology and Oceanography. 54(6):2243–2254.
  • Soued C, del Giorgio PA, Maranger R. 2016. Nitrous oxide sinks and emissions in boreal aquatic networks in Quebec. Nature Geoscience. 9(2):116–120.
  • Striegl RG, Michmerhuizen CM. 1998. Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes. Limnology and Oceanography. 43(7):1519–1529.
  • Tranvik LJ, Cole JJ, Prairie YT. 2018. The study of carbon in inland waters-from isolated ecosystems to players in the global carbon cycle. Limnology and Oceanography Letters. 3(3):41–48.
  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography. 54(6_part_2):2298–2314.
  • Vant WN, Davies-Colley RJ, Clayton JS, Coffey BT. 1986. Macrophyte depth limits in North Island (New Zealand) lakes of differing clarity. Hydrobiologia. 137(1):55–60.
  • Varadharajan C, Hemond HF. 2012. Time-series analysis of high-resolution ebullition fluxes from a stratified, freshwater lake. Journal of Geophysical Research. 117(2):1–15.
  • Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS. 2006. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature. 443(7107):71–75.
  • Weiss RF. 1970. The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Research. 17(4):721–735.
  • Weiss RF, Price BA. 1980. Nitrous oxide solubility in water and seawater. Marine Chemistry. 8(4):347–359.
  • West WE, Coloso JJ, Jones SE. 2012. Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment. Freshwater Biology. 57(5):949–955.
  • West WE, Creamer KP, Jones SE. 2016. Productivity and depth regulate lake contributions to atmospheric methane. Limnology and Oceanography. 61:S51–S61.
  • Weyhenmeyer GA, Kosten S, Wallin MB, Tranvik LJ, Jeppesen E, Roland F. 2015. Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs. Nature Geoscience. 8:933–936. https://doi.org/10.1038/ngeo2582.
  • Wiesenburg DA, Guinasso NL. 1979. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. Journal of Chemical & Engineering Data. 24(4):356–360. http://pubs.acs.org/doi/abs/10.1021/je60083a006.
  • Wik M, Thornton BF, Bastviken D, Uhlbäck J, Crill PM. 2016. Biased sampling of methane release from northern lakes: a problem for extrapolation. Geophysical Research Letters. 43:1256–1262.
  • Wilkinson GM, Buelo CD, Cole JJ, Pace ML. 2016. Exogenously produced CO2 doubles the CO2 efflux from three north temperate lakes. Geophysical Research Letters. 43(5):1996–2003.
  • Winslow L, Read J, Woolway R, Brentrup J, Leach T, Zwart J. 2015. rLakeAnalyzer: package for the Analysis of Lake Physics.R package version 1.7.3. http://cran.r-project.org/package=rLakeAnalyzer.
  • Yvon-Durocher G, Jones JI, Trimmer M, Woodward G, Montoya JM. 2010. Warming alters the metabolic balance of ecosystems. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 365(1549):2117–2126.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.