141
Views
3
CrossRef citations to date
0
Altmetric
Technical Papers

X-Ray and Neutron Radiography System Optimization by Means of a Multiobjective Approach and a Simplified Ray-Tracing Method

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 147-166 | Received 20 Nov 2019, Accepted 06 Mar 2020, Published online: 30 May 2020

References

  • H. JAFARI and S. A. H. FEGHHI, “Design and Simulation of Neutron Radiography System Based on 241Am-Be Source,” Radiat. Phys. Chem., 81, 5, 506 (2012); https://doi.org/10.1016/j.radphyschem.2011.12.027.
  • S. C. A. CORREA et al., “Computed Radiography Simulation Using the Monte Carlo Code MCNPX,” Appl. Radiat. Isot., 68, 8, 1662 (2010); https://doi.org/10.1016/j.apradiso.2010.02.011.
  • E. M. SOUZA et al., “Methodology for Digital Radiography Simulation Using the Monte Carlo Code MCNPX for Industrial Applications,” Appl. Radiat. Isot., 66, 5, 587 (2008); https://doi.org/10.1016/j.apradiso.2007.11.004.
  • M. WINSLOW, X. G. XU, and B. YAZICI, “Development of a Simulator for Radiographic Image Optimization,” Comput. Meth. Prog. Bio., 78, 3, 179 (2005); https://doi.org/10.1016/j.cmpb.2005.02.004.
  • N. LI et al., “Virtual X-Ray Imaging Techniques in an Immersive Casting Simulation Environment,” Nucl. Instrum. Meth. Phys. Res. B, 262, 1, 143 (2007); https://doi.org/10.1016/j.nimb.2007.04.262.
  • P. DUVAUCHELLE et al., “A Computer Code to Simulate X-Ray Imaging Techniques,” Nucl. Instrum. Meth. Phys. Res. B, 170, 1–2, 245 (2000); https://doi.org/10.1016/s0168-583x(00)00185-3.
  • A. BONIN, B. CHALMOND, and B. LAVAYSSIERE, “Monte-Carlo Simulation of Industrial Radiography Images and Experimental Designs,” NDT&E Int., 35, 8, 503 (2002); https://doi.org/10.1016/S0963-8695(02)00014-2.
  • D. LAZOS, Z. KOLITSI, and N. PALLIKARAKIS, “A Software Data Generator for Radiographic Imaging Investigations,” IEEE Trans. Inf. Technol. Biomed, 4, 1, 76 (2000); https://doi.org/10.1109/4233.826863.
  • F. INANC and J. N. GRAY, “Scattering Simulations in Radiography,” Appl. Radiat. Isot., 48, 10–12, 1299 (1997); https://doi.org/10.1016/S0969-8043(97)00122-X.
  • C. BELLON et al., “Radiographic Simulator aRTist: Version 2,” Proc. 18th World Conf. Nondestructive Testing, Durban, South Africa, April 16–20, 2012.
  • P. CALMON et al., “CIVA: An Expertise Platform for Simulation and Processing NDT Data,” Ultrasonics, 44, 975 (2006); https://doi.org/10.1016/j.ultras.2006.05.218.
  • K. VISWANATHAN and K. BALASUBRAMANIAM, “Modeling and Simulation Schemes in X-Ray Radiography and Computed Tomography,” Proc. Indian Society for Non Destructive Testing National Seminar & Exhibition Non-Destructive Evaluation, Tiruchirappalli, India, December 10–12, 2009, p. 266 (2010).
  • R. A. FORSTER and T. N. K. GODFREY, Monte-Carlo Methods and Applications in Neutronics, Photonics and Statistical Physics. Lecture Notes in Physics, Vol. 240, p. 33, Springer, Heidelberg (2006).
  • P. WILLENDRUP et al., “McStas: Past, Present and Future,” J. Neutron Res., 17, 1, 35 (2014); https://doi.org/10.3233/JNR-130004.
  • K. LEFMANN and K. NIELSEN, “McStas, A General Software Package for Neutron Ray-Tracing Simulations,” Neutron News, 10, 3, 20 (1999); https://doi.org/10.1080/10448639908233684.
  • A. S. GLASSNER, An Introduction to Ray Tracing, Chap. 1, p. 1, Academic Press, San Diego, California (1989).
  • M. PHARR and G. HUMPHREYS, Physically Based Rendering: From Theory to Implementation, p. 4, Morgan Kaufmann, Burlington, Massachusetts (2010).
  • C. WÄCHTER and A. KELLER, “Instant Ray Tracing: The Bounding Interval Hierarchy,” Proc. Eurographics Association Aire-la-Ville 17th Eurographics Symp. Rendering Techniques, Nicosia, Cyprus, June 26–28, 2006, p. 139 (2006).
  • P. HERTRICH, Practical Radiography: Principles and Applications, p. 34, Publicis Corporate Publishing, Erlangen, Germany (2005).
  • W. R. HENDEE and E. R. RITENOUR, Medical Imaging Physics, p. 265, Wiley-Liss, New York (2002).
  • S. C. WHITE and M. J. PHAROAH, Oral Radiology: Principles and Interpretation, p. 46, C. V. Mosby Company, St. Louis, Missouri (2009).
  • Q. B. CARROLL, Radiography in the Digital Age: Physics - Exposure - Radiation Biology, p. 229, Charles C Thomas Publisher, Springfield, Illinois (2011).
  • D. C. CUTFORTH, “Neutron Sources for Radiography and Gaging,” Practical Applications of Neutron Radiography and Gaging, STP-586, p. 20, H. BERGER, Ed., American Society for Testing and Materials, Philadelphia, Pennsylvania (1976).
  • P. RAMAMURTHY, “Factors Controlling the Quality of Radiograph and the Quality Assurance,” NTI Bull., 31, 3&4, 37 (1995).
  • J. P. BARTON, “Neutron Radiography—An Overview,” Practical Applications of Neutron Radiography and Gaging, STP-586, p. 5, American Society for Testing and Materials, Philadelphia, Pennsylvania (1976).
  • D. E. THRALL and W. R. WIDMER, “Radiation Protection and Physics of Diagnostic Radiology,” Textbook of Veterinary Diagnostic Radiology, p. 2, Elsevier Saunders (2012).
  • M. UFFMANN et al., “Flat-Panel–Detector Chest Radiography: Effect of Tube Voltage on Image Quality,” Radiology, 235, 2, 642 (2005); https://doi.org/10.1148/radiol.2352031730.
  • N. A. GKANATSIOS, W. HUDA, and K. R. PETERS, “Effect of Radiographic Techniques (kVp and mAs) on Image Quality and Patient Doses in Digital Subtraction Angiography,” Med. Phys., 29, 8, 1643 (2002); https://doi.org/10.1118/1.1493213.
  • Q. B. CARROLL, Radiography in the Digital Age: Physics – Exposure - Radiation Biology, p. 363, Charles C Thomas Publisher, Springfield, Illinois (2011).
  • M. AMINI, A. H. FADAEI, and M. GHARIB, “Analyzing the Effect of Geometric Factors on Designing Neutron,” Appl. Radiat. Isot., 105, 249 (2015); https://doi.org/10.1016/j.apradiso.2015.08.030.
  • I. D. ROBERTSON and D. E. THRALL, “Radiation Protection and Physics of Diagnostic Radiology,” Textbook of Veterinary Diagnostic Radiology, p. 2, Elsevier Saunders (2012).
  • R. R. CARLTON and A. M. ADLER, Principles of Radiographic Imaging: An Art and a Science, p. 233, Delmar Cengage Learning, Clifton Park, New York (2012).
  • T. HAGEN, V. HAAN, and P. LEEGE, “Optimisation of Fast-Neutron Radiography by Using a New Imaging Quality Concept,” Nucl. Instrum. Meth. Phys. Res. A, 517, 1–3, 264 (2004); https://doi.org/10.1016/j.nima.2003.09.033.
  • M. KÖRNER et al., “Advances in Digital Radiography: Physical Principles and System Overview,” RadioGraphics, 27, 3, 675 (2007); https://doi.org/10.1148/rg.273065075.
  • J. T. BUSHBERG et al., The Essential Physics of Medical Imaging, p. 61, Lippincott Williams & Wilkins, Philadelphia, Pennsylvania (2002).
  • J. A. DE RAAD and A. KUIPER, Industrial Radiography: Image Forming Techniques, GE Inspection Technologies, Rotterdam, Netherlands (2008).
  • P. ALLISY-ROBERTS and J. R. WILLIAMS, Farr’s Physics for Medical Imaging, p. 79, Saunders, Philadelphia, Pennsylvania (2008).
  • R. M. AMBROSI and J. I. W. WATTERSON, “Factors Affecting Image Formation in Accelerator-Based Fast Neutron Radiography,” Nucl. Instrum. Meth. Phys. Res. B, 139, 1–4, 279 (1998); https://doi.org/10.1016/s0168-583x(98)00043-3.
  • E. L. NICKOLOFF and H. L. BERMAN, “Factors Affecting X-Ray Spectra,” Radiographics, 13, 6, 1337 (1993); https://doi.org/10.1148/radiographics.13.6.8290728.
  • R. L. DIXON and C. T. WHITLOW, Basic Radiology, p. 15, McGraw Hill Medical, New York (2011).
  • H. E. JOHNS and J. R. CUNNINGHAM, The Physics of Radiology, p. 37, Charles C Thomas Publisher, Springfield, Illinois (1983).
  • D. R. DANCE et al., Diagnostic Radiology Physics: A Handbook for Teachers and Students, p. 89, International Atomic Energy Agency (2014).
  • J. T. BUSHBERG et al., The Essential Physics of Medical Imaging, p. 255, Lippincott William & Wilkins, Philadelphia, Pennsylvania (2002).
  • S. S. HISS, Understanding Radiography, p. 3, Charles C Thomas Publisher, Springfield, Illinois (2003).
  • M. SANDBORG, “Radiography and Flouroscopy: Physical Principles and Biohazards,” LIU-RAD-R-080, p. 24, Linköping University (1995).
  • B. HASEGAWA, Physics of Medical X-Ray Imaging, p. 53, Medical Physics Publishing Corporation, Madison, Wisconsin (1987).
  • F. CAMPEAU and J. FLEITZ, Limited Radiography, p. 233, Delmar Cengage Learning, New York (2009).
  • Q. B. CARROLL, Radiography in the Digital Age: Physics - Exposure - Radiation Biology, p. 215, Charles C Thomas Publisher, Springfield, Illinois (2011).
  • Q. B. CARROLL, Practical Radiographic Imaging, p. 28, Charles C Thomas Publisher, Springfield, Illinois (2007).
  • S. TAKAHASHI, Magnification Radiography, p. 18, Springer-Verlag, Berlin (1975).
  • S. O’CONNOR and J. MAHER, X-Radiography of Textiles, Dress and Related Objects (Conservation and Museology), p. 58, Routledge, Oxford, United Kingdom (2007).
  • I. D. ROBERTSON and D. E. THRALL, “Digital Radiographic Imaging,” Textbook of Veterinary Diagnostic Radiology, p. 22, Elsevier Saunders (2012).
  • S. W. SMITH, The Scientist & Engineer’s Guide to Digital Signal Processing, p. 373, California Technical Publishing, San Diego, California (1997).
  • A. P. KAESTNER et al., “Samples to Determine the Resolution of Neutron Radiography and Tomography,” Physics Procedia, 88, 258 (2017); https://doi.org/10.1016/j.phpro.2017.06.036.
  • B. BLAKELEY and K. SPARTIOTIS, “Digital Radiography for the Inspection of Small Defects,” Insight Non-Destr. Test. Condition Monit., 48, 2, 109 (2006); https://doi.org/10.1784/insi.2006.48.2.109.
  • I. K. INDRAJIT and B. S. VERMA, “Digital Imaging in Radiology Practice: An Introduction to Few Fundamental Concepts,” Indian J. Radiol. Imaging, 17, 4, 230 (2007); https://doi.org/10.4103/0971-3026.36866.
  • K. M. MARTENSEN, Radiographic Image Analysis, p. 1, Elsevier Saunders (2015).
  • E. SAMEI, “Performance of Digital Radiographic Detectors: Quantification and Assessment Methods,” Advances in Digital Radiography: RSNA 2003: Categorical Course in Diagnostic Radiology Physics, p. 37 (2003).
  • O. E. LANGLAND, R. P. LANGLAIS, and J. PREECE, Principles of Dental Imaging, p. 51, Lippincott Williams Wilkins, Philadelphia, Pennsylvania (2002).
  • T. L. FAUBER, Radiographic Imaging and Exposure, p. 42, C. V. Mosby Company, St. Louis, Missouri (2012).
  • J. JOHNSTON and T. L. FAUBER, Essentials of Radiographic Physics and Imaging, p. 92, Elsevier (2015).
  • A. S. WHITLEY et al., Clark’s Positioning in Radiography, p. 1, CRC Press, Boca Raton, Florida (2005).
  • R. V. DAELE, I. VERPOEST, and P. DE MEESTER, Manual on Experimental Methods for Mechanical Testing of Composites, p. 115, Elsevier Applied Science, London (1989).
  • Q. B. CARROLL, Radiography in Digital Age: Physics – Exposure - Radiation Biology, p. 411, Charles C Thomas, Springfield, Illinois (2011).
  • K. BAVENDIEK et al., “New Measurement Methods of Focal Spot Size and Shape of X-Ray Tubes in Digital Radiological Applications in Comparison to Current Standards,” Proc. 18th World Conf. Nondestructive Testing, Durban, South Africa, April 16–20, 2012.
  • P. Z. NADILA et al., “Development of Stand Alone Application Tool for Processing and Quality Measurement of Weld Imperfection Image Captured by μ-Focused Digital Radiography Using Matlab-Based Graphical User Interface,” J. Eng. Res., 9, 2, 64 (2012); https://doi.org/10.24200/tjer.vol9iss2pp64-79.
  • U. ZSCHERPEL, K. OSTERLOH, and U. EWERT, “Unsharpness Characteristics of Digital Detectors for Industrial Radiographic Imaging,” Proc. Int. Symp. Computed Tomography and Image Processing for Industrial Radiology, Berlin, Germany, June 23–25, 2003, Vol. 9 (2004).
  • N. TANAKA et al., “Effect of Readout Direction in the Edge Profile on the Modulation Transfer Function of Computed Radiographic Systems by Use of the Edge Method,” Radiol. Phys. Technol., 6, 2, 474 (2013); https://doi.org/10.1007/s12194-013-0222-5.
  • A. A. HARMS and A. ZEILINGER, “A New Formulation of Total Unsharpness in Radiography,” Phys. Med. Biol., 22, 1, 70 (1977); https://doi.org/10.1088/0031-9155/22/1/009.
  • R. ILIĆ et al., “A Study of the Neutron Radiographic Parameters of Some Solid-State Nuclear Track Detectors,” Proc. 1st World Conf. Neutron Radiography, San Diego, California, December 7–10, 1981, p. 755 (1983).
  • C. A. SCHNEIDER, W. S. RASBAND, and K. W. ELICEIRI, “NIH Image to ImageJ: 25 Years of Image Analysis,” Nature Meth., 9, 7, 671 (2012); https://doi.org/10.1038/nmeth.2089.
  • J. W. HOFFMAN and F. C. DE BEER, “Characteristics of the Micro-Focus X-Ray Tomography Facility (Mixrad) at Necsa in South Africa,” Proc. 18th World Conf. Nondestructive Testing, Durban, South Africa, April 16–20, 2012.
  • F. C. DE BEER, “Characteristics of the Neutron/X-Ray Tomography System at the SANRAD Facility in South Africa,” Nucl. Instrum. Meth. Phys. Res. A, 542, 1–3, 1 (2005); https://doi.org/10.1016/j.nima.2005.01.003.
  • F. GRÜNAUER, “Monte Carlo Simulations for the Safari Reactor and Its Instruments: Neutron Radiography Facility,” South African Nuclear Energy Corporation (2009).
  • K. K. MISHRA, A. I. HAWARI, and V. H. GILLETTE, “Design and Performance of a Thermal Neutron Imaging Facility at the North Carolina State University PULSTAR Reactor,” IEEE Trans. Nucl. Sci., 53, 6, 3904 (2006); https://doi.org/10.1109/tns.2006.884323.
  • J. KENNEDY and R. C. EBERHART, “Particle Swarm Optimization,” Proc. IEEE Int. Joint Conf. Neural Networks, Perth, Australia, November 27–December 1, 1995, p. 1942 (1995).
  • Y. ZHANG, S. WANG, and G. JI, “A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications,” Math. Probl. Eng., 2015, 1, 1 (2015); https://doi.org/10.1155/2015/931256.
  • R. THANGARAJ et al., “Particle Swarm Optimization: Hybridization Perspectives and Experimental Illustrations,” Appl. Math. Comput., 217, 12, 5208 (2011); https://doi.org/10.1016/j.amc.2010.12.053.
  • K. KAMEYAMA, “Particle Swarm Optimization—A Survey,” IEICE Trans. Inf. Syst., E92-D, 7, 1354 (2009); https://doi.org/10.1587/transinf.E92.D.1354.
  • M. ESLAMI et al., “A Survey of the State of the Art in Particle Swarm Optimization,” Res. J. Appl. Sci. Eng. Technol., 4, 9, 1181 (2012).
  • F. MARINI and B. WALCZAK, “Particle Swarm Optimization (PSO). A Tutorial,” Chemometr. Intell. Lab. Syst., 149, Part B, 153 (2015); https://doi.org/10.1016/j.chemolab.2015.08.020.
  • K. DEB, Multi-Objective Optimization Using Evolutionary Algorithms, p. 13, John Wiley & Sons, West Sussex, United Kingdom (2001).
  • V. M. CARRILLO and H. TABOADA, “A Sweeping Cones Technique for Post Pareto Analysis,” Proc. 2013 Institute of Industrial Engineers Industrial and Systems Engineering Research Conf., Puerto Rico, 2013.
  • E. ZIO and R. BAZZO, Computational Intelligence Systems in Industrial Engineering, Vol. 6, Chap. 2, p. 23, Atlantis Press, Amsterdam (2012).
  • P. M. CHAUDHARI, R. V. DHARASKAR, and V. M. THAKARE, “Computing the Most Significant Solution from Pareto Front Obtained in Multi-Objective Evolutionary,” Int. J. Adv. Comput. Sci. Appl., 1, 4, 63 (2010); https://doi.org/10.14569/IJACSA.2010.010411.
  • M. CHEIKH et al., “A Method for Selecting Pareto Optimal Solutions in Multiobjective Optimization,” J. Inf. Math. Sci., 2, 1, 51 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.