196
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

Modeling of Lateral Flow in CFD for Subchannel Analysis

ORCID Icon
Pages 1591-1604 | Received 29 Sep 2021, Accepted 10 Mar 2022, Published online: 31 May 2022

References

  • N. E. TODREAS and M. S. KAZIMI, Nuclear Systems II: Elements of Thermal Hydraulic Design, Massachusetts Institute of Technology (2001).
  • I. E. IDEL´CHIK, “Handbook of Hydraulic Resistance—Coefficients of Local Resistance and of Friction,” AEC-TR-6630, U.S. Atomic Energy Commission and the National Science Foundation by the Israel Program for Scientific Translations (1966).
  • J. ČÍŽEK and V. CAHA, “SUBCAL-ETE Code Documentation, Rev. 1,” Technical report CCE 118064.00.093.857, Chemcomex, Praha (2018).
  • J. M. CUTA et al., VIPRE-01: A Thermal-Hydraulic Analysis Code for Reactor Cores, Vol. 2, “User’s Manual” (1983); https://www.osti.gov/biblio/6025503-vipre-thermal-hydraulic-analysis-code-reactor-cores-volume-user-manual-pwr-bwr.
  • “COBRA-FLX: A Core Thermal-Hydraulic Analysis Code,” Topical Report ANP-10311NP, Framatome (2010).
  • J. W. JACKSON and N. E. TODREAS, “COBRA IIIC/MIT-2: A Digital Computer Program for Steady State and Transient Thermal-Hydraulic Analysis of Rod Bundle Nuclear Fuel Elements,” Energy Laboratory Report No MIT-EL 81-018, Massachusetts Institute of Technology (1981).
  • R. A. JUDD et al., “ASSERT-4 User´s Manual,” AECL-8573, Atomic Energy of Canada Ltd. (1984).
  • U. IMKE and V. H. SANCHEZ, “Validation of the Subchannel Code SUBCAHNFLOW Using the NUPEC PWR Tests (PSBT),” Sci. Technol. Nucl. Ins., 2012, Article ID 465059 (2012); https://doi.org/10.1155/2012/465059.
  • KAERI, “Development of a Subchannel Analysis Code MATRA (Ver. α),” TR-1033/98, Korea Atomic Energy Research Institute (1998).
  • ANSYS Fluent Theory Guide, Release 2020 R2, ANSYS (2020).
  • A. C. TRUPP, “The Structure of Turbulent Flow in Triangular Array Rod Bundles,” PhD Thesis, The University of Manitoba, Department of Mechanical Engineering (1973).
  • F. MANTLÍK, J. HEJNA, and J. ČERVENKA, “Results of Local Measurements of Hydraulic Characteristics in Triangular Pin Bundle,” ÚJV 3778-R, ÚJV Řež (1976).
  • V. VONKA, “Measurement of Secondary Flow Vortices in a Rod Bundle,” Nucl. Eng. Des., 106, 2, 191 (1988); https://doi.org/10.1016/0029-5493(88)90277-4.
  • T. KRAUSS and L. MEYER, “Experimental Investigation of Turbulent Transport of Momentum and Energy in a Heated Rod Bundle,” Nucl. Eng. Des., 180, 185 (1997).
  • H. NINOKATA, E. MERZARI, and A. KHAKIM, “Analysis of Low Reynolds Number Turbulent Flow Phenomena in Nuclear Fuel Pin Subassemblies of Tight Lattice Configuration,” Nucl. Eng. Des., 239, 855 (2009).
  • E. BAGLIETTO, H. NINOKATA, and T. MISAWA, “CFD and DNS Methodologies for Fuel Bundle Simulations,” Nucl. Eng. Des., 236, 14–16, 1503 (2006); https://doi.org/10.1016/j.nucengdes.2006.03.045.
  • M. M. GIBSON and B. E. LAUNDER, “Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer,” J. Fluid Mech., 86, 3, 491 (1978); https://doi.org/10.1017/S0022112078001251.
  • B. E. LAUNDER, “Second-Moment Closure: Present … and Future?” Int. J. Heat Fluid Flow, 10, 4, 282 (1989); https://doi.org/10.1016/0142-727X(89)90017-9.
  • B. E. LAUNDER, G. J. REECE, and W. RODI, “Progress in the Development of a Reynolds-Stress Turbulence Closure,” J. Fluid Mech., 68, 3, 537 (1975); https://doi.org/10.1017/S0022112075001814.
  • D. C. WILCOX, “Turbulence Modeling for CFD,” DCW Industries, Inc. La Canada, California (1998).
  • D. S. ROWE et al., “Implications Concerning Rod Bundle Crossflow Mixing Based on Measurements of Turbulent Flow Structure,” Int. J. Heat Mass Transfer, 17, 3, 407 (1974); https://doi.org/10.1016/0017-9310(74)90012-X.
  • J. D. HOOPER and K. REHME, “Large-Scale Structural Effect in Developed Turbulent Flows through Closely Spaced Rod Arrays,” J. Fluid Mech., 145, –1, 305 (1983); https://doi.org/10.1017/S0022112084002949.
  • E. E. DOMINGUEZ-ONTIVEROS et al., “Experimental Benchmark Data for PWR Rod Bundle with Spacer-grids,” Nucl. Eng. Des., 253, 396 (2012); https://doi.org/10.1016/j.nucengdes.2012.09.003.
  • T. NGUYEN et al., “PIV Measurements of Turbulent Flows in a 61-pin Wire-Wrapped Hexagonal Fuel Bundle,” Int. J. Heat Fluid Flow, 65, 47, 47 (2017); https://doi.org/10.1016/j.ijheatfluidflow.2017.03.007.
  • N. GOTH et al., “PTV/PIV Measurements of Turbulent Flows in Interior Subchannels of a 61-pin Wire-wrapped Hexagonal Fuel Bundle,” Int. J. Heat Fluid Flow, 71, 295 (2018); https://doi.org/10.1016/j.ijheatfluidflow.2018.03.021.
  • E. BAGLIETTO and H. NINOKATA, “A Turbulence Model Study for Simulating Flow Inside Tight Lattice Rod Bundles,” Nucl. Eng. Des., 235, 7, 773 (2005); https://doi.org/10.1016/j.nucengdes.2004.10.007.
  • B. L. MAGOLAN, Implementation of a Non-linear Viscosity Turbulence Model into Hydra-TH for Fuel Related Applications, University of Illinois at Urbana-Champaign (2015).
  • Y. Q. YU et al., “Simulation of Turbulent Flow Inside Different Subchannels in Tight Lattice Bundle,” Ann. Nucl. Energy, 38, 11, 2363 (2011); https://doi.org/10.1016/j.anucene.2011.07.018.
  • V. S. OSMAČKIN and V. D. BORISOV, “Gidravlicheskoe soprotivlenie puchkov teplovydelyayushchikh sterzhnej v potoke kipyashchej vody,” IAE-1957 (1970); https://inis.iaea.org/search/search.aspx?orig_q=RN:2005386.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.