819
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

The Experimental and Simulation Results of LIVE-J2 Test—Investigation on Heat Transfer in a Solid–Liquid Mixture Pool

ORCID Icon, ORCID Icon, ORCID Icon, , , & show all
Pages 144-168 | Received 27 Mar 2022, Accepted 31 Aug 2022, Published online: 27 Sep 2022

References

  • M. PELLEGRINI et al., “Main Findings, Remaining Uncertainties and Lessons Learned from the OECD/NEA BSAF Project,” Nucl. Technol., 206, 9, 1449 (2020); https://doi.org/10.1080/00295450.2020.1724731.
  • L. E. HERRANZ et al., “Overview and Outcomes of the OECD/NEA Benchmark Study of the Accident at the Fukushima Daiichi NPS (BSAF) Phase 2—Results of Severe Accident Analyses for Unit 1,” Nucl. Eng. Des., 369, 110849 (Oct. 2020); https://doi.org/10.1016/j.nucengdes.2020.110849.
  • M. SONNENKALB et al., “Overview and Outcomes of the OECD/NEA Benchmark Study of the Accident at the Fukushima Daiichi NPS (BSAF), Phase 2—Results of Severe Accident Analyses for Unit 2,” Nucl. Eng. Des., 369, 110840 (2020); https://doi.org/10.1016/j.nucengdes.2020.110840.
  • T. LIND et al., “Overview and Outcomes of the OECD/NEA Benchmark Study of the Accident at the Fukushima Daiichi NPS (BSAF), Phase 2—Results of Severe Accident Analyses for Unit 3,” Nucl. Eng. Des., 376, 111138, (2021); https://doi.org/10.1016/j.nucengdes.2021.111138.
  • W. KLEIN-HESSLING et al., “Conclusions on Severe Accident Research Priorities,” Ann. Nucl. Energy, 74, 4, 4 (2014); https://doi.org/10.1016/j.anucene.2014.07.015.
  • “Fukushima Daiichi Nuclear Power Station Unit 2 Primary Containment Vessel Internal Investigation Results,” Tokyo Electric Power Company Holdings, Inc., (2018); https://www.tepco.co.jp/en/nu/fukushima-np/handouts/2018/images/handouts_180201_01-e.pdf (current as of May 15, 2021).
  • “Locating Fuel Debris inside the Unit 2 Reactor Using a Muon Measurement Technology at Fukushima Daiichi Nuclear Power Station,” Tokyo Electric Power Company Holdings, Inc. (2016); https://www.tepco.co.jp/en/nu/fukushima-np/handouts/2016/images/handouts_160728_01-e.pdf (current as of Jan. 30, 2020).
  • H. MADOKORO et al., “LIVE-J1 Experiment on Debris Melting Behavior Toward Understanding Late In-Vessel Accident Progression of the Fukushima Daiichi Nuclear Power Station,” Proc. 19th Int. Topl. Mtg. on Nuclear Reactor Thermal Hydraulics (NURETH-19), Brussels, Belgium (2022).
  • F. KRETZSCHMAR and B. FLUHRER, Behavior of the Melt Pool in the Lower Plenum of the Reactor Pressure Vessel—Review of Experimental Programs and Background of the LIVE Program, Vol. FZKA-7382, Forschungszentrum Karlsruhe (2008).
  • X. GAUS-LIU et al., “Experimental Study on the Melt Pool Transient Behaviour in LWR Lower Head Under Changing Boundary Cooling Conditions: The Outcomes of LIVE-ALISA Experiment,” presented at the 12th Int. Topl. Mtg. on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-12), Qingdao, China (2018).
  • X. GAUS-LIU et al., “In-Vessel Melt Pool Coolibility Test—Description and Results of LIVE Experiments,” Nucl. Eng. Des., 240, 11, 3898 (2010); https://doi.org/10.1016/j.nucengdes.2010.09.001.
  • “AISI316Ti Data Sheet,” M. WOITE GMBH (2012);https://woite-edelstahl.com/aisi316tien.html (current as of Mar. 27, 2022).
  • G. J. JANZ et al., Physical Properties Data Complications Relevant to Energy Storage II. Molten Salts: Data on Single and Multi-component Salt Systems, U.S. Government Printing Office, Washington, District of Columbia (1979); https://nvlpubs.nist.gov/nistpubs/Legacy/NSRDS/nbsnsrds61p2.pdf.
  • T. BAUER, D. LAING, and R. TAMME, “Overview of PCMs for Concentrated Solar Power in the Temperature Range 200 to 350°C,” Adv. Sci. Technol., 74, 272 (2010); https://doi.org/10.4028/www.scientific.net/ast.74.272.
  • D. J. ROGERS and G. J. JANZ, “Melting-Crystallization and Premelting Properties of NaNO3-KNO3. Enthalpies and Heat Capacities,” J. Chem. Eng. Data, 27, 424 (1982); https://doi.org/10.1021/je00030a017.
  • G. D. SAO and H. V. TIWARY, “Thermal Expansion of Potassium Nitrate Films,” Jpn. J. Appl. Phys., 20, 3, L225 (1981); https://doi.org/10.1143/JJAP.20.L225.
  • “ANSYS Fluent User’s Guide (2020R2),” ANSYS Inc. (2020).
  • S. ERGUN, “Fluid Flow Through Packed Columns,” Chem. Eng. Prog., 48, 2, 89 (1952).
  • V. R. VOLLER and C. PRAKASH, “A Fixed-Grid Numerical Modeling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems,” Int. J. Heat Mass Transfer, 30, 8, 1709 (1987); https://doi.org/10.1016/0017-9310(87)90317-6.
  • V. PRASAD et al., “Evaluation of Correlations for Stagnant Thermal Conductivity of Liquid-Saturated Porous Beds of Spheres,” Int. J. Heat Mass Transfer, 32, 9, 1793 (1989); https://doi.org/10.1016/0017-9310(89)90061-6.
  • H. T. AICHLMAYR and F. A. KULACKI, “The Effective Thermal Conductivity of Saturated Porous Media,” presented at the 2005 ASME Summer Heat Transfer Conf. (HT2005), San Francisco, California (2005); https://doi.org/10.1016/S0065-2717(06)39004-1.
  • G. R. HADLEY, “Thermal Conductivity of Packed Metal Powders,” Int. J. Heat Mass Transfer, 29, 6, 909 (1986); https://doi.org/10.1016/0017-9310(86)90186-9.