178
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

Airborne Release Fraction of Dissolved Materials During the Combustion of Liquids Representative of Nuclear Waste Treatment Process

, , , , , , , , , , , , , , & show all
Pages 169-192 | Received 03 Nov 2021, Accepted 23 Sep 2022, Published online: 15 Dec 2022

References

  • R. S. HERBST, P. BARON, and M. NILSSON, “Standard and Advanced Separation: PUREX Processes for Nuclear Fuel Reprocessing,” Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment, Woodhead Publishing Limited (2011); https://doi.org/10.1533/9780857092274.2.141.
  • B. NAJAFI et al., “History of Fire Events in the U.S. Commercial Nuclear Industry,” Proc. 10th Int. Conf. Nuclear Engineering, 2, 381, ASMEDC (2002); https://doi.org/10.1115/ICONE10-22587.
  • F. -X. OUF et al., “Physicochemical Properties of Aerosol Released in the Case of a Fire Involving Materials Used in the Nuclear Industry,” J. Hazard. Mater., 283, 340 (2015); https://doi.org/10.1016/j.jhazmat.2014.09.043.
  • T. HERTZBERG and P. BLOMQVIST, “Particles from Fires—A Screening of Common Materials Found in Buildings,” Fire Mater., 27, 6, 295 (2003); https://doi.org/10.1002/fam.837.
  • J. FLOYD, K. OVERHOLT, and O. EZEKOYE, “Soot Deposition and Gravitational Settling Modeling and the Impact of Particle Size and Agglomeration,” Fire Saf. Sci., 11, 174 (2014); https://doi.org/10.3801/IAFSS.FSS.11-376.
  • E. BRUGIÈRE et al., “Increase in Thermophoretic Velocity of Carbon Aggregates as a Function of Particle Size,” J. Aerosol Sci., 76, 87 (2014); https://doi.org/10.1016/j.jaerosci.2014.06.007.
  • V. M. MOCHO and F. X. OUF, “Clogging of Industrial Pleated High Efficiency Particulate Air (HEPA) Filters in the Event of Fire,” Nucl. Eng. Des., 241, 5, 1785 (2011); https://doi.org/10.1016/j.nucengdes.2011.01.036.
  • S. BOURROUS et al., “Measurement and Modeling of Pressure Drop of HEPA Filters Clogged with Ultrafine Particles,” Powder Technol., 289, 109 (2016); https://doi.org/10.1016/j.powtec.2015.11.020.
  • T. ISHIBASHI et al., “Clogging of HEPA Filters by Soot During Fire Events in Nuclear Fuel Cycle Facilities,” Nucl. Technol., 187, 57 (2014); https://doi.org/10.13182/NT13-94.
  • J. G. QUINTIERE, “A Review of Experiments on the Airborne Release of Simulated Radioactive Compounds from Fire,” Fire Technol., 34, 4, 307 (1998); https://doi.org/10.1023/A:1015314510914.
  • F. -X. OUF et al., “Contribution to the Study of Particle Resuspension Kinetics During Thermal Degradation of Polymers,” J. Hazard. Mater., 250–251, 298 (2013); https://doi.org/10.1016/j.jhazmat.2013.01.060.
  • F. -X. OUF et al., “Airborne Release of Hazardous Micron-Sized Metallic/Metal Oxide Particles During Thermal Degradation of Polycarbonate Surfaces Contaminated by Particles: Towards a Phenomenological Description,” J. Hazard. Mater., 384, 121490 (2020); https://doi.org/10.1016/j.jhazmat.2019.121490.
  • Y. FERNANDEZ and P. BURGHOFFER, “Radioactive Aerosols Emission in Fires,” Aerosol Sci. Technol., 23, 2, 231 (1995); https://doi.org/10.1080/02786829508965306.
  • M. Y. BALLINGER et al., “Aerosols Released in Accidents in Reprocessing Plants,” Nucl. Technol., 81, 2, 278 (1988); https://doi.org/10.13182/NT88-A34097.
  • L. BOUILLOUX, “Etude de la mise en suspension physico-chimique des oxydes de plutonium et d’uranium lors de la combustion de polycarbonate et de ruthénium lors de la combustion des solvants de retraitement du combustible irradié,” Institut National Polytechnique de Grenoble (1998) (in French).
  • G. NISHIO and K. HASHIMOTO, “Release of Radioactive Materials in Simulation Tests of a Postulated Solvent Fire in a Nuclear Fuel Reprocessing Plant,” Nucl. Technol., 88, 213 (1989); https://doi.org/10.13182/NT89-A34305.
  • J. MISHIMA and L. C. SCHWENDIMAN, “Some Experimental Measurements of Airborne Uranium (Representing Plutonium) in Transportation Accidents,” BNWL-1732, Battelle Pacific Northwest Laboratories (1973).
  • M. A. HALVERSON, M. Y. BALLINGER, and G. W. DENNIS, “Combustion Aerosols Formed during Burning of Radioactively Contaminated Materials,” NUREG/CR 4736, U.S. Nuclear Regulatory Commission (1987).
  • J. C. MALET et al., “Solvent Pool Fire Testing,” Proc. CSNI Specialist Mtg. on Interaction of Fire and Explosion with Ventilation Systems in Nuclear Facilities, Los Alamos, New Mexico, Vol. II, no. 83, p. 391, Los Alamos National Laboratory (1983).
  • S. JORDAN and W. LINDNER, “Aerosols Released from Solvent Fire Accidents in Reprocessing Plants,” p. 561, Nuclear Energy Agency, Karlsruhe, Germany (1984).
  • H. D. SEEHARS, “Release of Pu-Containing Materials During a Kerosene Fire,” J. Aerosol Sci., 14, 3, 446 (1983); https://doi.org/10.1016/0021-8502(83)90158-1.
  • J. A. HUBBARD et al., “Airborne Release Fractions from Surrogate Nuclear Waste Fires Containing Lanthanide Nitrates and Depleted Uranium Nitrate in 30% Tributyl Phosphate in Kerosene,” Nucl. Technol., 207, 1, 103 (2021); https://doi.org/10.1080/00295450.2020.1739995.
  • J. MISHIMA and L. C. SCHWENDIMAN, “Interim Report: The Fractional Airborne Release of Dissolved Radioactive Materials During the Combustion of 30 Percent Normal Tributylphosphate in a Kerosine-Type Diluent,” BNWL-B-274, Battelle Pacific Northwest Laboratories (1973); https://doi.org/10.2172/4296864.
  • M. Y. BALLINGER and P. C. OWCZARSKI, “Radioactive Source Term Models in a Compartment Fire Code,” Nucl. Technol., 69, 1, 36 (1985); https://doi.org/10.13182/NT85-A33593.
  • S. L. SUTTER, J. MISHIMA, and L. C. SCHWENDIMAN, “Fractional Airborne Release of Strontium During the Combustion of 30 Percent Normal Tributyl Phosphate in a Kerosine-Type Diluent,” BNWL-B-358, Battelle Pacific Northwest Laboratories (1974).
  • S. JORDAN and W. LINDNER, “Aerosols Released from Solvent Fire Accidents in Reprocessing Plants,” Proc. CSNI Specialist Mtg. on Nuclear Aerosols in Reactor Safety, Karlsruhe, Germany, p. 101, Federal Republic of Germany (1985).
  • D. D. EVANS et al., “In Situ Burning of Oil Spills,” J. Res. Natl. Inst. Stand. Technol., 106, 1, 231 (2001); https://doi.org/10.6028/jres.106.009.
  • Y. YAO et al., “Scale Effect of Mass Loss Rates for Pool Fires in an Open Environment and in Tunnels with Wind,” Fire Saf. J., 105, 41 (2019); https://doi.org/10.1016/j.firesaf.2019.02.004.
  • V. KOGAN and P. M. SCHUMACHER, “Plutonium Release Fractions from Accidental Fires,” Nucl. Technol., 161, 2, 190 (2008); https://doi.org/10.13182/NT08-A3922.
  • M. ŠULKA, L. CANTREL, and V. VALLET, “Theoretical Study of Plutonium(IV) Complexes Formed Within the PUREX Process: A Proposal of a Plutonium Surrogate in Fire Conditions,” J. Phys. Chem. A, 118, 43, 10073 (2014); https://doi.org/10.1021/jp507684f.
  • H. FEUCHTER et al., “Influence of Light and Temperature on the Extractability of Cerium(IV) as a Surrogate of Plutonium(IV) and Its Effect on the Simulation of an Accidental Fire in the PUREX Process,” ACS Omega, 4, 7, 12896 (2019); https://doi.org/10.1021/acsomega.9b00746.
  • P. A. BINGHAM et al., “The Use of Surrogates in Waste Immobilization Studies: A Case Study of Plutonium,” MRS Proc., 1107, 2006, 421 (2008); https://doi.org/10.1557/PROC-1107-421.
  • M. R. ANTONIO et al., “Third Phase Inversion, Red Oil Formation, and Multinuclear Speciation of Tetravalent Cerium in the Tri-N-Butyl Phosphate–N-Dodecane Solvent Extraction System,” Sep. Sci. Technol., 53, 12, 1834 (2018); https://doi.org/10.1080/01496395.2017.1281303.
  • A. L. BROWN et al., “Contaminant Entrainment from a Gasoline Pool Fire,” Proc. Fall 2015 Western States Section of the Combustion Institute, p. 1 (2015).
  • F. PIERCE et al., “Multicomponent Evaporation Effects on Particulate Release in a Liquid Fuel Fire,” (2017).
  • A. L. BROWN and D. L. Y. LOUIE, “Contaminant Entrainment in a Liquid Fuel Fire,” Proc. 2nd Thermal and Fluid Engineering Summer Conf. (TFESC), p. 1 (2015).
  • J. O. COSANDEY, A. GÜNTHER, and P. RUDOLF VON ROHR, “Transport of Salts and Micron-Sized Particles Entrained from a Boiling Water Pool,” Exp. Therm. Fluid Sci., 27, 8, 877 (2003); https://doi.org/10.1016/S0894-1777(03)00060-8.
  • P. MOEYAERT et al., “Experimental and Modelling Study of Ruthenium Extraction with Tri-N-Butylphosphate in the PUREX Process,” Chem. Eng. Sci., 158, 580, (2017); https://doi.org/10.1016/j.ces.2016.10.035.
  • D. J. PRUETT, “The Solvent Extraction Behavior of Ruthenium I—the Nitric Acid-Tri-N-Butyl Phosphate System,” Radiochim. Acta, 27, 115 (1980); https://doi.org/10.1524/ract.1980.27.2.115.
  • P. G. M. BROWN, J. M. FLETCHER, and A. G. WAIN, “Nitrato Nitrosylruthenium Ccomplexes and Their Extraction from Nitric Acid Systems by Tributes Phosphate. Part I. Laboratory Studies,” ERE-C/R-2260, Harwell, England (1957).
  • D. O. C. SOUZA and F. C. MENEGALLI, “Image Analysis: Statistical Study of Particle Size Distribution and Shape Characterization,” Powder Technol., 214, 1, 57 (2011); https://doi.org/10.1016/j.powtec.2011.07.035.
  • C. LEFEBVRE et al., “Speciation of Ruthenium in Organic TBP/TPH Organic Phases: A Study About Acidity of Nitric Solutions,” Procedia Chem., 21, 54 (2016); https://doi.org/10.1016/j.proche.2016.10.008.
  • Ž. PETROVIĆ et al., “Formation of RuO2 Nanoparticles by Thermal Decomposition of Ru(NO)(NO3)3,” Ceram. Int., 41, 6, 7811 (2015); https://doi.org/10.1016/j.ceramint.2015.02.115.
  • P. H. DUVIGNEAUD and D. REINHARD-DERIE, “DTA Study of RuO2 Formation from the Thermal Decomposition of Ruthenium(III) Hydrate,” Thermochim. Acta, 51, 2–3, 307 (1981); https://doi.org/10.1016/0040-6031(81)85168-4.
  • C. BRUNEAU et al., “Thermal Degradation of Tri-N-Butyl Phosphate,” J. Anal. Appl. Pyrolysis, 3, 1, 71 (1981); https://doi.org/10.1016/0165-2370(81)80027-7.
  • T. KOBYLINSKI and B. W. TAYLER, “Ruthenium Phosphates as New Compounds and Process of Using Same,” US Patent 3,895,095 (1975).
  • A. DAGHETTI, G. LODI, and S. TRASATTI, “Interfacial Properties of Oxides Used as Anodes in the Electrochemical Technology,” Mater. Chem. Phys., 8, 1, 1 (1983); https://doi.org/10.1016/0254-0584(83)90020-2.
  • H. LHUISSIER and E. VILLERMAUX, “Bursting Bubble Aerosols,” J. Fluid Mech., 696, 5, 5 (2012); https://doi.org/10.1017/jfm.2011.418.
  • A. BALDELLI et al., “Effect of Crystallization Kinetics on the Properties of Spray Dried Microparticles,” Aerosol Sci. Technol., 50, 7, 693 (2016); https://doi.org/10.1080/02786826.2016.1177163.
  • H. HIRAI et al., “Characterization and Thermal Behavior of Amorphous Rare Earth Phosphates,” J. Alloys Compd., 374, 1–2, 84 (2004); https://doi.org/10.1016/j.jallcom.2003.11.069.
  • I. ROMER et al., “Impact of Particle Size, Oxidation State and Capping Agent of Different Cerium Dioxide Nanoparticles on the Phosphate-Induced Transformations at Different pH and Concentration,” PLoS One, 14, 6, 1 (2019); https://doi.org/10.1371/journal.pone.0217483.
  • D. C. BLANCHARD and L. D. SYZDEK, “Film Drop Production as a Function of Bubble Size,” J. Geophys. Res., 93, C4, 3649 (1988); https://doi.org/10.1029/JC093iC04p03649.
  • F. RESCH and G. AFETI, “Film Drop Distributions from Bubbles Bursting in Seawater,” J. Geophys. Res., 96, C6, 10681 (1991); https://doi.org/10.1029/91jc00433.
  • J. WU, “Production Functions of Film Drops by Bursting Bubbles,” J. Phys. Oceanogr., 31, 11, 3249 (2002); https://doi.org/10.1175/1520-0485(2001)031<3249:pfofdb>2.0.co;2.
  • M. K. KOCH et al., “Radionuclide Re-Entrainment at Bubbling Water Pool Surfaces,” J. Aerosol Sci., 31, 9, 1015 (2000); https://doi.org/10.1016/S0021-8502(00)00025-2.
  • D. C. BLANCHARD, “The Ejection of Drops from the Sea and Their Enrichment with Bacteria and Other Materials: A Review,” Estuaries, 12, 3, 127 (1989); https://doi.org/10.2307/1351816.
  • D. E. SPIEL, “On the Births of Film Drops from Bubbles Bursting on Seawater Surfaces,” J. Geophys. Res. Oceangr., 103, C11, 24907 (1998); https://doi.org/10.1029/98JC02233.
  • L. M. RUSSELL and E. G. SINGH, “Submicron Salt Particle Production in Bubble Bursting,” Aerosol Sci. Technol., 40, 9, 664 (2006); https://doi.org/10.1080/02786820600793951.
  • W. R. KE et al., “Characterization of Aerosol Emissions from Single Bubble Bursting,” J. Aerosol Sci. 109, 1 (Mar. 1, 2017); https://doi.org/10.1016/j.jaerosci.2017.03.006.
  • R. BORKOWSKI, H. BUNZ, and W. SCHÖCK, “Resuspension of Fission Products during Severe Accidents in Light-Water Reactors,” KfK 3987, EUR 10391EN, Kernforschungszentrum-Karlsruhe-GMBH, Karlsruhe (1986).
  • T. WONGSAWA et al., “The Experimental Investigations on Viscosity, Surface Tension, Interfacial Tension and Solubility of the Binary and Ternary Systems for Tributyl Phosphate (TBP) Extractant in Various Organic Solvents with Water: Thermodynamic NRTL Model and Molecular Interaction Approach,” J. Mol. Liq., 251, 229 (2018); https://doi.org/10.1016/j.molliq.2017.12.074.
  • P. KULKARNI, P. A. BARON, and K. WILLEKE, Aerosol Measurement: Principles, Techniques, and Applications, 3rd ed., Edition Wiley, Hoboken, New Jersey (2011); https://doi.org/10.1002/9781118001684.
  • W. L. COWLEY et al., “Estimating Risk Using Bounding Calculations and Limited Data,” presented at the Spring Mtg., American Institute of Chemical Engineers (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.