1,071
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

P2M Simulation Exercise on Past Fuel Melting Irradiation Experiments

ORCID Icon, , , , , , , , , , , , , , , , , , , , , , & show all
Pages 189-215 | Received 27 Jun 2022, Accepted 03 Mar 2023, Published online: 23 May 2023

References

  • OECD/NEA FIDES website, Organisation for Economic Co-operation and Development, Nuclear Energy Agency; https://oecd-nea.org/jcms/pl_15313/framework-for-irradiation-experiments-fides.
  • A. BAIN, “The Heat Rating Required to Produce Central Melting in Various UO2 Fuels,” Proc. Symp. Radiation Effects in Refractory Fuel Compounds, ASTM International (1962).
  • J. ROBERTSON et al., “Temperature Distribution in UO2 Fuel Elements,” J. Nucl. Mater., 7, 3, 225 (1962); https://doi.org/10.1016/0022-3115(62)90243-X.
  • D. DE HALAS and G. HORN, “Evolution of Uranium Dioxide Structure During Irradiation of Fuel Rods,” J. Nucl. Mater., 8, 2, 207 (1963); https://doi.org/10.1016/0022-3115(63)90036-9.
  • M. FRESHLEY, “Operation with Fuel Melting,” Nucl. Eng. Des., 21, 2, 254 (1972); https://doi.org/10.1016/0029-5493(72)90076-3.
  • J. JOSEPH, J. ROYER, and M. GROSGEORGE, “Transient Behaviour of Fragema Fuel Rods Previously Irradiaited Under Commerical Reactor Operating Conditions,” Proc. Topl. Mtg. LWR Fuel Performance, Williamsburg, Virginia, 1988, p. 17, American Nuclear Society (1988).
  • R. VAN NIEUWENHOVE and S. SOLSTAD, “In-Core Fuel Performance and Material Characterization in the Halden Reactor,” IEEE Trans. Nucl. Sci., 57, 2683 (2010); https://doi.org/10.1109/TNS.2010.2050701.
  • B. BOER and M. VERWERFT, “Qualification of the New Pressurized Water Capsule (PWC) for Fuel Testing at BR2,” Proc. European Research Reactor Conf. (RRFM 2021), Helsinki, Finland, September 26–30, 2021, European Nuclear Society (2021).
  • B. MICHEL et al., “Simulation of Pellet-Cladding Interaction with the PLEIADES Fuel Performance Software Environment,” Nucl. Technol., 182, 2, 124 (2013); https://doi.org/10.13182/NT13-A16424.
  • J. SERCOMBE et al., “Modelling of Pellet Cladding Interaction,” Comprehensive Nuclear Materials, R. KONINGS and R. STOLLER, Eds., Elsevier, Oxford (2020).
  • B. MICHEL et al., “Two Fuel Performance Codes of the PLEIADES Platform: ALCYONE and GERMINAL,” Nuclear Power Plant Design and Analysis Codes, p. 207, Elsevier (2021).
  • A. MAGNI et al., “The TRANSURANUS Fuel Performance Code,” Nuclear Power Plant Design and Analysis Codes, p. 161, Elsevier (2021).
  • D. BARON et al., “CYRANO3: The EDF Fuel Performance Code Especially Designed for Engineering Applications,” Proc. Water Reactor Fuel Performance Meeting (WRFPM 2008), Seoul, Korea, 2008, Paper No. 8032.
  • R. LARGENTON and G. THOUVENIN, “CYRANO3: The EDF Fuel Performance Code—Global Overview and Recent Developments on Fission Gas Modelling,” Proc. Water Reactor Fuel Performance Meeting (WRFPM 2014), Sendai, Japan, September 14–17 2014, Paper No. 100032.
  • U. ENGMAN, “Step Ramp Test of the PWR Test Rod xM3 with ZIRLO Radial Texture,” Technical Report 146, STUDSVIK-SCIP-II (2012).
  • V. ARIMESCU et al., “Third SCIP Modeling Workshop: Beneficial Impact of Slow Power Ramp on PCI Performance,” Proc. Water Reactor Fuel Performance Meeting (WRFPM 2014), Sendai, Japan, September 14–17 2014, Paper No. 100045.
  • P. BLANPAIN, “HBC Task 3 Power-to-Melt Experiment,” HBC 89/10 (1989).
  • G. BONNY et al., “Re-Evaluation of a Power-to-Melt Experiment Performed in the High Burnup Chemistry International Program,” Nucl. Technol. (October 2022) ( submitted for publication).
  • H.-U. ZWICKY, “Post-Irradiation Examinations of Ramped Rodlets xM1,xM2 and xM3,” Technical Report 140, STUDSVIK-SCIP-II (2012).
  • V. D’AMBROSI et al., “Presentation of the xM3 Test Case of the P2M Simulation Exercise and Modeling with the Fuel Performance Code ALCYONE” (Dec. 2022) (in preparation).
  • M. INOUE et al., “Power-to-Melts of Uranium–Plutonium Oxide Fuel Pins at a Beginning-of-Life Condition in the Experimental Fast Reactor JOYO,” J. Nucl. Mater., 323, 1, 108 (2003); https://doi.org/10.1016/j.jnucmat.2003.08.030.
  • P. SENS, “The Kinetics of Pore Movement in UO2 Fuel Rods,” J. Nucl. Mater., 43, 3, 293 (1972); https://doi.org/10.1016/0022-3115(72)90061-X.
  • R. BAKER and R. LEGGETT, “Early-in-Life Thermal Performance of UO2–PuO2 Fast Reactor Fuel,” Hanford Engineering Development Laboratory (1979).
  • D. FREUND, D. GEITHOFF, and H. STEINER, “Evaluation of the Power-to-Melt Experiments POTOM,” J. Nucl. Mater., 204, 228 (1993); https://doi.org/10.1016/0022-3115(93)90221-J.
  • I. VANCE and P. MILLETT, “Phase-Field Simulations of Pore Migration and Morphology Change in Thermal Gradients,” J. Nucl. Mater., 490, 299 (2017); https://doi.org/10.1016/j.jnucmat.2017.04.027.
  • R. SCHUSTER and W. ZIMMERER, “Darstellung der stoffdaten des systems MAPLIB in tabellarischer und graphischer form,” KFK 1792, Gesellschaft für Kernforschung mbH (1973).
  • A. MAGNI et al., “Modelling and Assessment of Thermal Conductivity and Melting Behaviour of MOX Fuel for Fast Reactor Applications,” J. Nucl. Mater., 541, 152410 (2020); https://doi.org/10.1016/j.jnucmat.2020.152410.
  • A. MAGNI et al., “Modelling of Thermal Conductivity and Melting Behaviour of Minor Actinide-MOX Fuels and Assessment Against Experimental and Molecular Dynamics Data,” J. Nucl. Mater., 557, 153312 (2021); https://doi.org/10.1016/j.jnucmat.2021.153312.
  • V. DI MARCELLO et al., “Modelling Actinide Redistribution in Mixed Oxide Fuel for Sodium Fast Reactors,” Prog. Nucl. Energy, 72, 83 (2014); https://doi.org/10.1016/j.pnucene.2013.10.008.
  • K. GEELHOOD et al., “FRAPCON-4.0: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup,” PNNL-19418, Pacific Northwest National Laboratory (2015).
  • K. GEELHOOD et al., “FRAPTRAN-2.0: A Computer Code for the Transient Analysis of Oxide Fuel Rods,” PNNL-19400, Rev.2, Pacific Northwest National Laboratory (2016).
  • D. HAGRMAN, G. REYMANN, and G. MASON, “MATPRO-Version11, A Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior,” NUREG/CR-0497, TREE-1280, Rev.3, Idaho National Engineering Laboratory (1979).
  • W. LUSCHER and K. GEELHOOD, “Material Property Correlations: Comparisons Between FRAPCON-3.4, FRAPTRAN 1.4, and MATPRO,” PNNL-19417, Pacific Northwest National Laboratory (2010).
  • “FAST Fuel Performance Code”; https://fast.labworks.org/.
  • K. GEELHOOD et al., “MatLib-1.0: Nuclear Material Properties Library,” PNNL 29728, Pacific Northwest National Laboratory (2020).
  • H. LOUKUSA, J. PELTONEN, and V. VALTAVIRTA, “FINIX—Fuel Behavior Model and Interface for Multi-Physics Applications—Code Documentation for Version 1.19.1,” VTT-R-00052-19, VTT Technical Research Centre of Finland (2019).
  • L. JERNKVIST and A. MASSIH, “Assessment of Core Failure Limits for Light Water Reactor Under Reactivity Initiated Accidents,” Technical Report 2005:16, Swedish Nuclear Power Inspectorate (2004).
  • OpenCalphad Software website; http://www.opencalphad.com/.
  • C. INTRONI, J. SERCOMBE, and B. SUNDMAN, “Development of a Robust, Accurate and Efficient Coupling Between PLEIADES/ALCYONE 2.1 Fuel Performance Code and the OpenCalphad Thermo-Chemical Solver,” Nucl. Eng. Des., 369, 110818 (2020); https://doi.org/10.1016/j.nucengdes.2020.110818.
  • “Thermodynamics Advanced Fuels—International Database,” Organisation for Economic Co-operation and Development, Nuclear Energy Agency (2013); https://www.oecd-nea.org/science/taf-id/.
  • A. CHAIEB et al., “Computational Assessment of LOCA Simulation Tests on High Burnup Fuel Rods in Halden and Studsvik Using CYRANO3 Code,” Proc. TopFuel, Santander, Spain, 2021.
  • “TESPA-ROD Code”; https://www.grs.de/en/research-and-assessment/reactor-safety/tespa-rod-temperature-strain-and-pressure-analysis-fuel-rod.
  • Y. UDAGAWA and M. AMAYA, “Model Updates and Performance Evaluations on Fuel Performance Code FEMAXI-8 for Light Water Reactor Fuel Analysis,” J. Nucl. Sci. Technol., 56, 6, 461 (2019); https://doi.org/10.1080/00223131.2019.1595766.
  • J. CHRISTENSEN, “Stoichiometry Effects in Oxide Nuclear Fuels. I. Power Rating Required for Melting and Oxygen Redistribution in Molten Center of UO2±x Fuels,” Battelle-Northwest, Pacific Northwest Laboratory (1967).
  • S. YAMANOUCHI et al., “Melting Temperature of Irradiated UO2 and UO2-2wt%Gd2O3 Fuel Pellets up to Burnup of About 30 GWd/tU,” J. Nucl. Sci. Technol., 25, 6, 528 (1988); https://doi.org/10.1080/18811248.1988.9733625.
  • R. WILLIAMSON et al., “Multidimensional Multiphysics Simulation of Nuclear Fuel Behavior,” J. Nucl. Mater., 423, 1–3, 149 (2012); https://doi.org/10.1016/j.jnucmat.2012.01.012.
  • S. YAGNIK et al., “Fuel Analysis and Licensing Code: FALCON MOD01, Volume 1: Theoretical and Numerical Base,” Technical Report 1011307, Electric Power Research Institute (2004).
  • Nuclear Fuel Industry Research Program; https://www.epri.com/portfolio/programs/108031.
  • G. KHVOSTOV, “Modeling of Central Void Formation in LWR Fuel Pellets Due to High-Temperature Restructuring,” Nucl. Eng. Technol., 50, 7, 1190 (2018); https://doi.org/10.1016/j.net.2018.07.003.
  • J. CHRISTENSEN, “Irradiation Effects on Uranium Dioxide Melting,” General Electric Company Hanford Atomic Products Operation (1962).
  • M. ADAMSON, E. AITKEN, and R. CAPUTI, “Experimental and Thermodynamic Evaluation of the Melting Behavior of Irradiated Oxide Fuels,” J. Nucl. Mater., 130, 349 (1985); https://doi.org/10.1016/0022-3115(85)90323-X.
  • J. J. CARBAJO et al., “A Review of the Thermophysical Properties of MOX and UO2 Fuels,” J. Nucl. Mater., 299, 3, 181 (2001); https://doi.org/10.1016/S0022-3115(01)00692-4.
  • A. GERMAIN et al., “Modeling High Burnup Fuel Thermochemistry, Fission Product Release and Fuel Melting During the VERDON 1 and RT6 Tests,” J. Nucl. Mater., 561, 153527 (2022).
  • C. GUÉNEAU et al., “TAF-ID: An International Thermodynamic Database for Nuclear Fuels Applications,” Calphad, 72, 102212 (2021); https://doi.org/10.1016/j.calphad.2020.102212.
  • J. FINK, “Thermophysical Properties of Uranium Dioxide,” J. Nucl. Mater., 279, 1, 1 (2000); https://doi.org/10.1016/S0022-3115(99)00273-1.
  • B. LEWIS et al., “Overview of Experimental Programs on Core Melt Progression and Fission Product Release Behaviour,” J. Nucl. Mater., 380, 1, 126 (2008); https://doi.org/10.1016/j.jnucmat.2008.07.005.
  • L. JERNKVIST, “Computational Assessment of Burnup-Dependent Fuel Failure Thresholds for Reactivity Initiated Accidents,” J. Nucl. Sci. Technol., 43, 5, 546 (2006); https://doi.org/10.1080/18811248.2006.9711133.
  • P. MACDONALD et al. “Response of Unirradiated and Irradiated PWR Fuel Rods Tested Under Power-Cooling-Mismatch Conditions,” Nucl. Saf., 19, 4.
  • J. ARBORELIUS et al., “Advanced Doped UO2 Pellets in LWR Applications,” J. Nucl. Sci. Technol., 43, 9, 967 (2006); https://doi.org/10.1080/18811248.2006.9711184.
  • C. NONON et al., “PCI Behaviour of Chromium Oxide-Doped Fuel,” Proc. Pellet-Clad Interaction in Water Reactor Fuels, Aix-en-Provence, France, 2004, p. 305 (2004).
  • S. NOVASCONE et al., “Modeling Porosity Migration in LWR and Fast Reactor MOX Fuel Using the Finite Element Method,” J. Nucl. Mater., 508, 226 (2018); https://doi.org/10.1016/j.jnucmat.2018.05.041.
  • A. MARION, Nuclear Energy Institute, Letter to to H. N. BERKOW, U.S. Nuclear Regulatory Commission/Office of Nuclear Reactor Regulation, Safety Evaluation by the Office of Nuclear Reactor Regulation of Electric Power Research Institute (EPRI) Topical Report TR-1002865, “Topical Report on Reactivity Initiated Accidents: Bases for RIA Fuel Rod Failures and Core Coolability Criteria” (June 13, 2006); https://www.nrc.gov/docs/ML0616/ML061650107.pdf.
  • J. TURNBULL, “An Empirical Model of UO2 Thermal Conductivity Based on Laser Flash Measurements of Thermal Diffusivity,” TR-111347, Electric Power Research Institute (1998).
  • K. OHIRA and N. ITAGAKI, “Thermal Conductivity Measurements of High Burnup UO2 Pellet and a Benchmark Calculation of Fuel Center Temperature,” Proc. Int. Topl. Mtg. Light Water Reactor Fuel Performance, Portland, Oregon, 1997, p. 541, American Nuclear Society (1997).
  • J. KAMIMURA et al., “Thermal and Mechanical Behavior Modeling for High Burnup Fuel,” Proc. Water Reactor Fuel Performance Mtg., Seoul, Korea, 2008.