190
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Performance Evaluation of Batchwise Multistage Countercurrent Extraction in a LiCl–KCl/Cd System to Separate Actinides from Rare Earth Fission Products

ORCID Icon
Pages 147-164 | Received 13 Mar 2023, Accepted 17 May 2023, Published online: 13 Jul 2023

References

  • T. KOYAMA, “Nuclear Engineering for Pyrochemical Treatment of Spent Nuclear Fuels,” Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment, K. L. NASH and G. J. LUMETTA, Eds., Woodhead Publishing Limited (2011).
  • S. X. LI et al., “Integrated Efficiency Test for Pyrochemical Fuel Cycles,” Nucl. Technol., 166, 180 (2009); https://doi.org/10.13182/NT09-A7404.
  • J. H. LEE et al., “Assessment of a High-Throughput Electrorefining Concept for a Spent Metallic Nuclear Fuel—II: Electrohydrodynamic Analysis and Validation,” Nucl. Technol., 165, 370 (2009); https://doi.org/10.13182/NT09-A4108.
  • T. MURAKAMI et al., “Electrorefining of Metallic Fuel with Burn-Up of ~7 at% in a LiCl-KCl Melt,” J. Nucl. Sci. Technol., 55, 11, 1291 (2018); https://doi.org/10.1080/00223131.2018.1500317.
  • T. SATOH, T. IWAI, and Y. ARAI, “Electrolysis of Burnup-Simulated Uranium Nitride Fuels in LiCl-KCl Eutectic Melts,” J. Nucl. Sci. Technol., 46, 6, 557 (2009); https://doi.org/10.1080/18811248.2007.9711562.
  • S. D. HERRMANN, S. X. LI, and B. R. WESTPHAL, “Separation and Recovery of Uranium and Group Actinide Products from Irradiated Fast Reactor MOX Fuel via Electrolytic Reduction and Electrorefining,” Sep. Sci. Technol., 47, 2044 (2012); https://www.tandfonline.com/doi/full/10.1080/01496395.2012.697511.
  • Y. SAKAMURA and M. AKAGI, “Pyrochemical Reprocessing Tests to Collect Uranium Metal from Simulated Spent Oxide Fuel,” Nucl. Technol., 179, 220 (2012); https://doi.org/10.13182/NT179-220.
  • Z. TOMCZUK et al., “Uranium Transport to Solid Electrodes in Pyrochemical Reprocessing of Nuclear Fuel,” J. Electrochem. Soc., 139, 12, 3523 (1992); https://doi.org/10.1149/1.2069109.
  • M. IIZUKA et al., “Development of an Innovative Electrorefiner for High Uranium Recovery Rate from Metal Fast Reactor Fuels,” J. Nucl. Sci. Technol., 46, 7, 699 (2009); https://doi.org/10.1080/18811248.2007.9711577.
  • K. UOZUMI et al., “Electrochemical Behaviors of Uranium and Plutonium at Simultaneous Recoveries into Liquid Cadmium Cathodes,” J. Nucl. Mater., 325, 34 (2004); https://doi.org/10.1016/j.jnucmat.2003.10.010.
  • D. VADEN et al., “Engineering-Scale Liquid Cadmium Cathode Experiments,” Nucl. Technol., 162, 124 (2008); https://doi.org/10.13182/NT08-A3938.
  • S. X. LI et al., “Actinide Recovery Experiments with Bench-Scale Liquid Cadmium Cathode in Real Fission Product-Laden Molten Salt,” Nucl. Technol., 165, 190 (2009); https://doi.org/10.13182/NT09-A4085.
  • Y. SAKAMURA et al., “Novel Approach to Extracting Transuranic Elements in Molten Salt Electrorefining,” Nucl. Technol., 190, 193 (2015); https://doi.org/10.13182/NT14-64.
  • K. SATO et al., “Conceptual Design of an Integrated Metallic Fuel Recycle System,” Proc. Int. Conf. GLOBAL 2003, p. 744, American Nuclear Society, New Orleans, Louisiana, November 16–20, 2003 (2003).
  • K. UOZUMI et al., “Measurement of Molten Chloride Salt Flow and Demonstration of Simulated Fission Product Removal Using a Zeolite Column Apparatus for Spent Salt Treatment in Pyroprocessing,” Nucl. Technol., 188, 83 (2014); https://doi.org/10.13182/NT13-49.
  • T. KATO et al., “Separation Behaviors of Actinides from Rare-Earths in Molten Salt Electrorefining Using Saturated Liquid Cadmium Cathode,” J. Nucl. Mater., 357, 105 (2006); https://doi.org/10.1016/j.jnucmat.2006.06.003.
  • K. KINOSHITA, T. TSUKADA, and T. OGATA, “Single-Stage Extraction Test with Continuous Flow of Molten LiCl-KCl Salt and Liquid Cd for Pyro-Reprocessing of Metal FBR Fuel,” J. Nucl. Sci. Technol., 44, 12, 1557 (2007); https://doi.org/10.3327/jnst.44.1557.
  • T. MURAKAMI et al., “Rare Earth Silicide Formation on Si Electrode in LiCl-KCl Melt to Establish a Novel Used Salt Treatment Process,” ECS Trans., 98, 10, 33 (2020); https://doi.org/10.1149/09810.0033ecst.
  • S. PRIEBE and K. BATEMAN, “The Ceramic Waste Form Process at Idaho National Laboratory,” Nucl. Technol., 162, 199 (2008); https://doi.org/10.13182/NT08-A3948.
  • T. KOBAYASHI, “An Assessment of Multistage Counter Current Extraction of TRU from Spent Molten Salt into Liquid Metal II. Effect of Stage Efficiency, Scrub Stage, and TRU Concentration,” J. Nucl. Sci. Technol., 45, 1, 79 (2008); https://doi.org/10.3327/jnst.45.79.
  • J. P. ACKERMAN et al., “Treatment of Wastes in the IFR Fuel Cycle,” Prog. Nucl. Energy, 31, 141 (1997); https://doi.org/10.1016/0149-1970(96)00008-X.
  • K. KINOSHITA and T. TSUKADA, “Countercurrent Extraction Test with Continuous Flow of Molten LiCl-KCl Salt and Liquid Cd for Pyro-Reprocessing of Metal FBR Fuel,” J. Nucl. Sci. Technol., 47, 2, 211 (2010); https://doi.org/10.3327/jnst.47.211.
  • M. KURATA et al., “Distribution Behavior of Uranium, Neptunium, Rare-Earth Elements (Y, La, Ce, Nd, Sm, Eu, Gd) and Alkaline-Earth Metals (Sr, Ba) Between Molten LiCl-KCl Eutectic Salt and Liquid Cadmium or Bismuth,” J. Nucl. Mater., 227, 110 (1995); https://doi.org/10.1016/0022-3115(95)00146-8.
  • K. KINOSHITA et al., “Separation of Uranium and Transuranic Elements from Rare Earth Elements by Means of Multistage Extraction in LiCl-KCl/Bi System,” J. Nucl. Sci. Technol., 36, 2, 189 (1999); https://doi.org/10.1080/18811248.1999.9726197.
  • W. HAN et al., “Reductive Extraction of Lanthanides (Ce, Sm) and Its Monitoring in LiCl-KCl/Bi-Li System,” J. Nucl. Mater., 514, 311 (2019); https://doi.org/10.1016/j.jnucmat.2018.12.010.
  • D. LAMBERTIN et al., “Activity Coefficients of Plutonium and Cerium in Liquid Gallium at 1073 K: Application to a Molten Salt/Solvent Metal Separation Concept,” J. Nucl. Mater., 341, 131 (2005); https://doi.org/10.1016/j.jnucmat.2005.01.009.
  • T. TODA et al., “Thermodynamic Properties of Lanthanides and Actinides for Reductive Extraction of Minor Actinides,” J. Nucl. Sci. Technol., 46, 1, 18 (2009); https://doi.org/10.3327/jnst.46.18.
  • T. MURAKAMI et al., “Actinides Separation from Lanthanides Using a Liquid Ga Electrode in LiCl-KCl Melts,” J. Radiochim. Sci., 16, 5 (2016); https://doi.org/10.14494/jnrs.16.5.
  • K. LIU, Z.-F. CHAI, and W.-Q. SHI, “Liquid Electrodes for An/Ln Separation in Pyroprocessing,” J. Electrochem. Soc., 168, 032507 (2021); https://doi.org/10.1149/1945-7111/abec99.
  • T. B. MASSALSKI, Binary Alloy Phase Diagrams, Vol. 1, American Society for Metals (1986).
  • M. G. CHASANOV et al., “Solubility of 3-D Transition Metals in Liquid Cadmium,” Trans. Met. Soc. AIME, 224, 935 (1962).
  • T.-S. YOO et al., “Analysis of Undissolved Anode Materials of Mark-IV Electrorefiner,” J. Nucl. Mater., 510, 551 (2018); https://doi.org/10.1016/j.jnucmat.2018.08.022.
  • G. L. FREDRICKSON et al., “History and Status of Spent Fuel Treatment at the INL Fuel Conditioning Facility,” Prog. Nucl. Energy, 143, 104037 (2022); https://doi.org/10.1016/j.pnucene.2021.104037.
  • Y. SAKAMURA et al., “Thermodynamics of Neptunium in LiCl-KCl Eutectic/Liquid Bismuth Systems,” J. Electrochem. Soc., 147, 2, 642 (2000); https://doi.org/10.1149/1.1393246.
  • I. JOHNSON and M. G. CHASANOV, “Uranium Solubility in Liquid Gallium, Indium, Thallium and Lead,” Trans. ASM, 56, 272 (1963).
  • F. H. ELLINGER, C. C. LAND, and V. O. STRUEBING, “The Plutonium-Gallium System,” J. Nucl. Mater., 12, 226 (1964); https://doi.org/10.1016/0022-3115(64)90145-X.
  • M. SAKATA et al., “Equilibrium Distribution of Rare Earth Elements Between Molten KCl-LiCl Eutectic Salt and Liquid Cadmium,” J. Nucl. Mater., 185, 56 (1991); https://doi.org/10.1016/0022-3115(91)90365-E.
  • T. KOYAMA, T. R. JOHNSON, and D. F. FISCHER, “Distribution of Actinides in Molten Chloride Salt/Cadmium Metal Systems,” J. Alloys Comp., 189, 37 (1992); https://doi.org/10.1016/0925-8388(92)90043-9.
  • J. P. ACKERMAN and J. L. SETTLE, “Distribution of Plutonium, Americium, and Several Rare Earth Fission Product Elements Between Liquid Cadmium and LiCl-KCl Eutectic,” J. Alloys Comp., 199, 77 (1993); https://doi.org/10.1016/0925-8388(93)90430-U.
  • Y. SAKAMURA et al., “Distribution Behavior of Plutonium and Americium in LiCl-KCl Eutectic/Liquid Cadmium Systems,” J. Alloys Comp., 321, 76 (2001); https://doi.org/10.1016/S0925-8388(01)00973-2.
  • A. E. MARTIN, I. JOHNSON, and H. M. FEDER, “The Cadmium-Uranium Phase Diagram,” Trans. Metallurg. Soc. AIME, 221, 789 (1961).
  • M. KRUMPELT, I. JOHNSON, and J. J. HEIBERGER, “Cadmium-Neptunium, a Partial Phase Diagram of the System,” J. Less-Common Metals, 18, 35 (1969); https://doi.org/10.1016/0022-5088(69)90117-9.
  • I. JOHNSON, M. G. CHASANOV, and R. M. YONCO, “Pu-Cd System: Thermodynamics and Partial Phase Diagram,” Trans. Metallurg. Soc. AIME, 233, 1408 (1965).
  • I. JOHNSON, K. E. ANDERSON, and R. A. BLOMQUIST, “Partial Constitutional Diagrams for the Cd-La, Cd-Ce, Cd-Pr, Cd-Nd, and Cd-Sm Systems,” Trans. ASM, 59, 352 (1966).
  • I. JOHNSON, “Solubilities in Liquid Metals,” ANL-HMF-SL-1747, Argonne National Laboratory (1960).
  • Y. SAKAMURA et al., “Reaction of Metal Chlorides (Uranium, Rare Earth Element and Zirconium Chlorides) with O2− in LiCl-KCl Eutectic Salt,” Report T96073, Central Research Institute of Electric Power Industry (1997) ( in Japanese).
  • Y. SAKAMURA et al., “Chlorination of UO2, PuO2 and Rare-earth Oxides Using ZrCl4 in LiCl-KCl Eutectic Melt,” J. Nucl. Mater., 340, 39 (2005); https://doi.org/10.1016/j.jnucmat.2004.11.002.
  • Y. SAKAMURA et al., “Electrowinning of U-Pu onto Inert Solid Cathode in LiCl-KCl Eutectic Melts Containing UCl3 and PuCl3,” J. Nucl. Mater., 502, 270 (2018); https://doi.org/10.1016/j.jnucmat.2018.02.025.
  • A. F. LAPLACE et al., “Electrodeposition of Uranium and Transuranics Metals (Pu) on Solid Cathode,” Nucl. Technol., 163, 366 (2008); https://doi.org/10.13182/NT08-A3995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.