107
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Modeling of OECD/NEA P2M Benchmark Cases by Means of TRANSURANUS Code

ORCID Icon, , , &
Pages 324-353 | Received 19 Dec 2022, Accepted 20 Jun 2023, Published online: 21 Aug 2023

References

  • “Nuclear Power in a Clean Energy System,” International Energy Agency; https://www.iea.org/reports/nuclear-power-in-a-clean-energy-system ( current as of May 2019).
  • “OECD/NEA FIDES P2M,” Organisation for Economic Co-operation and Development, Nuclear Energy Agency; https://oecd-nea.org/jcms/pl_70378/power-to-melt-and-maneuverability-p2m-fides-joint-experimental-programme-jeep.
  • B. MICHEL et al., “Modeling of Pellet Cladding Interaction,” J. Nucl. Mater., 3, 677 (2021); https://doi.org/10.1016/B978-0-08-056033-5.00074-4.
  • J. SERCOMBE, B. MICHEL, and C. RIGLET-MARTIAL, “2.14—Modelling of Pellet Cladding Interaction,” Comprehensive Nuclear Materials, R. KONINGS and R. STOLLER, Eds., Elsevier, Oxford (2020).
  • K. LASSMANN, “TRANSURANUS: A Fuel Rod Analysis Code Ready for Use,” J. Nucl. Mater., 188, 295 (1992); https://doi.org/10.1016/0022-3115(92)90487-6.
  • D. BARON et al., “CYRANO3: The EDF Fuel Performance Code Especially Designed for Engineering Applications,” Proc. 2008 Water Reactor Fuel Performance Mtg., Seoul, Korea, October 19–23, 2008, Paper No. 8032.
  • R. LARGENTON and G. THOUVENIN, “CYRANO3: The EDF Fuel Performance Code—Global Overview and Recent Developments on Fission Gas Modelling,” Proc. 2014 Water Reactor Fuel Performance Mtg., Sendai, Japan, September 14–17, 2014, Paper No. 100032.
  • R. WILLIAMSON et al., “Multidimensional Multiphysics Simulation of Nuclear Fuel Behavior,” J. Nucl. Mater., 423, 1–3, 149 (2012); https://doi.org/10.1016/j.jnucmat.2012.01.012.
  • V. D’AMBROSI et al., “P2M Simulation Exercise on Past Fuel Melting Irradiation Experiments,” Nucl. Technol., 210, 2, 189 (2023); https://doi.org/10.1080/00295450.2023.2194270.
  • G. BONNY et al., “Re-Evaluation of a Power-to-Melt Experiment Performed in the High Burnup Chemistry International Program,” Nucl. Technol., 210, 2, 216 (2023); https://doi.org/10.1080/00295450.2023.2264505.
  • V. D’AMBROSI et al., “Presentation of the xM3 Test Case of the P2M Simulation Exercise and Modeling with the Fuel Performance Code ALCYONE,” Nucl. Technol., 210, 2, 285 (2023); https://doi.org/10.1080/00295450.2023.2253660.
  • J. DEKEYSER, V. SOBOLEV, and M. DECRETON, “Heat Transfer Through Vertical Annulus with Stagnant Water,” Proc. 4th World Conf. Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Brussels, Belgium, June 2—6, 1997, p. 2107 (1997).
  • P. VAN UFFELEN, “Modeling of Nuclear Fuel Behavior,” EUR 22321 EN, European Commission (2006).
  • K. LASSMANN et al., “Transuranus Handbook,” Version v1m1j12, European Commission, Joint Research Centre, Institute for Transuranium Elements (Karlsruhe) (July 2012).
  • A. MAGNI et al., “The TRANSURANUS Fuel Performance Code,” Nuclear Power Plant Design and Analysis Codes, p. 161, Elsevier (2021); https://doi.org/10.1016/B978-0-12-818190-4.00008-5.
  • K. LASSMANN et al., “The Radial Distribution of Plutonium in High Burn-Up UO2 Fuels,” J. Nucl. Mater., 208, 3, 223 (1994); https://doi.org/10.1016/0022-3115(94)90331-X.
  • A. H. BOOTH, “A Method of Calculating Fission Gas Diffusion from UO2 Fuel and Its Application to the X-2-f Loop Test,” CRDC-721, Atomic Energy of Canada (1957).
  • M. V. SPEIGHT, “A Calculation on the Migration of Fission Gas in Material Exhibiting Precipitation and Resolution of Gas Atoms Under Irradiation,” Nucl. Sci. Eng., 37, 2, 180 (1969); https://doi.org/10.13182/NSE69-A20676.
  • H. MATZKE, “Gas Release Mechanisms in UO2—A Critical Overview,” Radiation Effects, 53, 219 (1980); https://doi.org/10.1080/00337578008207118.
  • D. M. DOWLING, R. J. WHITE, and M. O. TUCKER, “The Effect of Irradiation-Induced Resolution on Fission Gas Release,” J. Nucl. Mater., 110, 37 (1982).
  • P. T. ELTON and K. LASSMANN, “Calculation Methods for Diffusion of Gas,” J. Nucl. Mater., 101, 259 (1987).
  • “MATPRO-Version 11, A Handbook of Material Properties for Use in the Analysis of LWR Fuel Rod Behaviour,” NUREG/CR-0497, TREE-1280, Idaho National Laboratory (1979).
  • D. D. LANNING, C. E. BEYER, and C. L. PAINTER, “FRAPCON-3: Modifications to Fuel Rod Material Properties and Performance Models for High-Burnup Application,” PNNL-11513, NUREG/CR-6534, Vol. 1, U.S. Nuclear Regulatory Commission.
  • R. SCHUSTER and W. ZIMMERER, “Darstellung der Stoffdaten des Systems MAPLIB in tabellarischer und graphischer Form,” KFK-Ext, 8, 77–1, 473 (1977).
  • W. L. LYON and W. E. BAILEY, “The Solid-Liquid Phase Diagram for the UO2-PuO2 System,” J. Nucl. Mater., 22, 332 (1967); https://doi.org/10.1016/0022-3115(67)90051-7.
  • J. H. HARDING and D. G. MARTIN, “A Recommendation for the Thermal Conductivity of UO2,” J. Nucl. Mater., 166, 223 (1989); https://doi.org/10.1016/0022-3115(89)90218-3.
  • D. BARON, “Fuel Thermal Conductivity: A Review of the Modelling Available for UO2, (UGd) O2 and MOX Fuel, Thermal Performance of High Burn-Up LWR Fuel,” Seminar Proceedings, Cadarache, France, March 3–6, 1998, p. 99, Organisation for Economic Co-operation and Development, Nuclear Energy Agency ( 1998).
  • F. SONTHEIMER et al., “A Fuel Thermal Conductivity Correlation Based on the Latest Experimentsl Results, Thermal Performance of High Burn-Up LWR Fuel,” Seminar Proceedings, Cadarache, France, March 3–6, 1998, p. 119, Organisation for Economic Co-operation and Development, Nuclear Energy Agency ( 1998).
  • S. FUKUSHIMA et al., “The Effect of Gadolinium Content on the Thermal Conductivity of Near-Stoichiometric (U,Gd)O2 Solid Solutions,” J. Nucl. Mater., 105, 201 (1982); https://doi.org/10.1016/0022-3115(82)90375-0.
  • K. LASSMANN et al., “Recent Developments of the TRANSURANUS Code with Emphasis on High Burn-Up Phenomena,” Proc. IAEA Technical Committee Mtg. Nuclear Fuel Behaviour Modelling at High Burn-Up,” Lake Windermere, United Kingdom, June 19–23, 2000, IAEA-TECDOC-1233, p. 387, International Atomic Energy Agency.
  • P. G. LUCUTA et al., “Thermal Conductivity of SIMFUEL,” J. Nucl. Mater., 188, 198 (1992); https://doi.org/10.1016/0022-3115(92)90471-V.
  • K. LASSMANN and A. MORENO, “The Light-Water-Reactor Version of the URANUS Integral Fuel-Rod Code,” Atomkernenergie, 30, 3, 207 (1977).
  • W. WIESENACK, “Assessment of UO2 Conductivity Degradation Based on In-Pile Temperature Data,” Proc. 1997 Int. Topl. Mtg. Light Water Reactor Fuel Performance, Portland, Oregon, March 2–6, 1997, p. 507, American Nuclear Society (1997).
  • K. OHIRA and N. ITAGAKI, “Thermal Conductivity Measurements of High Burnup UO2 Pellet and Benchmark Calculation of Fuel Center Temperature,” Proc. 1997 Int. Topl. Mtg. Light Water Reactor Fuel Performance, Portland, Oregon, March 2–6, 1997, p. 541, American Nuclear Society (1997).
  • G. DELETTE and M. CHARLES, “Thermal Conductivity of Fully Dense Un-Irradiated UO2,” Proc. IAEA Technical Committee Mtg. Water Reactor Fuel Element Modelling at High Burnup and Its Experimental Support, Bowness-on-Windermere, United Kingdom, September 1994, International Atomic Energy Agency (1994).
  • V. Z. JANKUS and R. W. WEEKS, “LIFE-II—A Computer Analysis of Fast Reactor-Fuel-Element Behaviour as a Function of Reactor Operating History,” Nucl. Eng. Des., 18, 83 (1972); https://doi.org/10.1016/0029-5493(72)90038-6.
  • E. DUNCOMBE et al., “CYGRO-3, A Computer Program to Determine Temperatures, Stress and Deformations in Oxide Fuel Rods,” WAPD-TM-921, Westinghouse Electric Corporation (1970).
  • H. KNAAB and R. VON JAN, “Fuel Performance Evaluation and Improved Fuel Utilization by Pool-Side Fuel Services,” Proc. Topl. Mtg. Light Water Reactor Fuel Performance,” Orlando, Florida, 1985, American Nuclear Society (1985).
  • P. VAN UFFELEN et al., “Revision of the Transuranus Urfric Model,” JRC-ITU-TN-2010/29, p. 95, Commission of the European Communities (2011)
  • F. GARZAROLLI et al., “Waterside Corrosion of Zircaloy Fuel Rods,” EPRI-NP-2789, Research Project 1250-1, Electric Power Research Institute (1982).
  • T. D. PYECHA et al., “Waterside Corrosion of PWR Fuel Rods Through Burn-Ups of 50000 MWd/MTU,” Proc. Topl. Mtg. Light Water Reactor Fuel Performance, Orlando, Florida, 1985, American Nuclear Society (1985).
  • “MATPRO-Version 11 (Revision 2), A Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Analysis,” D. L. HAGRMAN et al., Eds., NUREG/CR-0479, TREE-1280, Rev. 2, U.S. Nuclear Regulatory Commission (1981).
  • H. R. FREEBURN et al., “Light Water Reactor Fuel Rod Modelling Code Evaluation,” EPRI NP-369, Project 397-1, Final Report, Appendix A-10, Electric Power Research Institute (1977).
  • R. F. MATTAS et al., “Iodine SCC in Irradiated Zry Cladding,” Proc. Topl. Mtg. Light Water Reactor Fuel Performance, Portland, Oregon, April 29–May 2, 1979, CONF-790441–7, American Nuclear Society (1979).
  • “Improvement of Computer Codes Used for Fuel Behaviour Simulation FUMEX-III,” TECDOC-1697, International Atomic Energy Agency (2013).
  • “Fuel Modelling in Accident Conditions (FUMAC),” TECDOC-1889, International Atomic Energy Agency (2019).
  • “ OECD-NEA PCMI Benchmark,” Organisation for Economic Co-operation and Development, Nuclear Energy Agency; https://www.oecd-nea.org/jcms/pl_15168/pellet-cladding-mechanical-interaction-pcmi-benchmarkcurrentlyunderfinalization.
  • S. DJURLE et al., “The Super-Ramp Project, Final Report of the Super-Ramp Project,” STIR-32, APPENDIX D, Studsvik AB Atomenergi, Studsvik, Sweden (1984).
  • H. BAILLY, D. MENESSIER, and C. PRUNIER, The Nuclear Fuel of Pressurized Water Reactors and Fast Neutron Reactors, Collection du Commissariat a l’Energie Atomique, Lavoisier Publishing, Intercept, Paris, Andover (1999).
  • D. R. OLANDER, Fundamental Aspects of Nuclear Reactors Fuel Elements, University of California, Berkeley, Department of Nuclear Engineering (Jan. 1, 1976).
  • “Task Force, “Fuel Safety Criteria Technical Review—Results of OECD/CSNI/PWG2 Task Force on Fuel Safety Criteria,” OECDNEA/CSNI/R(99)25, Organisation for Economic Co-operation and Development, Nuclear Energy Agency (2000).
  • C. VITANZA et al., “Fission Gas Release from In-Pile Pressure Measurements,” HPR-221.10, Paper 38, presented at EHPG Loen, 1978.
  • L. LUZZI, G. PASTORE, and P. VAN UFFELEN, “Contribution of the Politecnico Di Milano to the FUMEX-III Project,” IAEA-TECDOC-1697 (Companion CD), International Atomic Energy Agency (2013).
  • D. ROZZIA et al. “Assessment of FGR by TRANSURANUS Code in LWR Fuels Subjected to Power Ramps, from the IFPE Database,” Proc. 20th Int. Conf. Nuclear Energy for New Europe, Bovec, Slovenia, September 12–15, 2011, p. 903 (2011).
  • P. VAN UFFELEN, “Contribution to the Modeling of Fission Gas Release in Light Water Reactor Fuel,” PhD Thesis, University of Liege, SCK CEN Report 0096056 (2002).
  • R. ADAMSON, F. GARZAROLLI, and C. PATTERSON, “In-Reactor Creep of Zirconium Alloys,” Advanced Nuclear Technology International (2009).
  • B. COX, “Pellet Clad Interaction (PCI) Failures of Zirconium Alloy Fuel Cladding,” J. Nucl. Mater., 172, 249 (1990); https://doi.org/10.1016/0022-3115(90)90282-R.
  • D. ROZZIA et al., “Capabilities of TRANSURANUS Code in Simulating Power Ramp Tests from the IFPE Database,” Nucl. Eng. Des., 241, 1078 (2010); https://doi.org/10.1016/j.nucengdes.2010.04.027.
  • P. VAN UFFELEN et al., “A Review of Fuel Performance Modelling,” J. Nucl. Mater., 516, 373 (2019).
  • M. DOSTAL et al., “OECD/NEA Benchmark on PCI Modeling with Fuel Performance Codes: Impact of Number of Radial Pellet Cracks and Pellet-Clad Friction Coefficient,” Proc. TOPFUEL-2018, Prague, Czech Republic, September 30–October 4, 2018, Paper number A0219.
  • G. J. HYLAND, “Thermal Conductivity of Solid UO2: Critique and Recommendation,” J. Nucl. Mater., 113, 125 (1983); https://doi.org/10.1016/0022-3115(83)90134-4.
  • P. W. WINTER and D. A. MACINNES, “The Thermal Conductivity of UO2,” Proc. IAEA Technical Committee Meeting Water Reactor Fuel Element Computer Modelling in Steady State, Transient and Accident Conditions, Preston, United Kingdom, September 1988.
  • H. A. TASMAN, “Thermal Conductivity of Liquid UO2, Preliminary Results,” TUAR-88, EUR 12385 EN, Commission of the European Communities (1989).
  • “Thermal Performance of High Burn-Up LWR Fuel,” Seminar Proceedings, Cadarache, France March 3–6, 1998, Organisation for Economic Co-operation and Development, Nuclear Energy Agency.
  • “Mixed-Oxide (MOX) Fuel Performance Benchmark,” Organisation for Economic Co-operation and Development, Nuclear Energy Agency (2007).
  • D. ROZZIA et al, “Capabilities of TRANSURANUS Code in Simulating Inception of Melting in FBR MOX Fuel,” Proc. 22nd Int. Conf. Nuclear Energy for New Europe, Bled, Slovenia, September 9–12, 2013, p. 609 (2013).
  • “Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants,” TECDOC-996, International Atomic Energy Agency (1998).
  • D. ROZZIA et al., “Modeling of BWR Inter-Ramp Project Experiments by Means of TRANSURANUS Code,” Ann. Nucl. Energy, 50, 238 (2012); https://doi.org/10.1016/j.anucene.2012.07.016.
  • J. H. DAVIES, E. V. HOSHI, and D. L. ZIMMERMAN, “Ramp Test Behavior of High O/U Fuel,” J. Nucl. Mater., 270, 87 (1999); https://doi.org/10.1016/S0022-3115(98)00756-9.
  • A. DENIS and A. SOBA, “Simulation of Pellet-Cladding Thermo-Mechanical Interaction and Fission Gas Release,” Nucl. Eng. Des., 223, 211 (2003); https://doi.org/10.1016/S0029-5493(02)00390-4.
  • D. ROZZIA et al, “Modeling and Assessment of PCI in LWR Fuel,” Proc. Int. Conf. Nuclear Energy for New Europe (NENE-2015), Portoroz, Slovenia, September 9–12, 2015, p. 811.
  • H. MOGARD et al., “A Review of Studsvik’s International Power Ramp Test Projects,” Studsvik AB Report 85/6 (1985).
  • D. ROZZIA et al., “Predictability of Fuel Failure Due to Pellet Cladding Interaction Based on PWR over Ramp Experimental Programme,” Proc. 2018 Int. Conf. Nuclear Energy for New Europe, Portoroz, Slovenia, September 13, 2018, p. 704.1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.