848
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Designing Nuclear Fuels with a Multi-Principal Element Alloying Approach

ORCID Icon, , , , , , & show all
Pages 511-531 | Received 10 Apr 2023, Accepted 09 Jul 2023, Published online: 20 Sep 2023

References

  • R. BOUCHER and P. BARTHELEMY, “Comparison of U-Pu-Mo, U-Pu-Nb, U-Pu-Ti, and U-Pu-Zr Alloys (Comparaison Des Alliages U-Pu-Mo, U-Pu-Nb, U-Pu-Ti, U-Pu-Zr),” Commissariat a l’Energie Atomique, Fontenay-aux-Roses, Centre d’Etudes Nucleaires (1964).
  • D. E. JANNEY, Metallic Fuels Handbook, Part 1 and Part 2, Idaho National Laboratory (2018).
  • D. E. JANNEY, S. L. HAYES, and C. A. ADKINS, “A Critical Review of the Experimentally Known Properties of U-Pu-Zr Alloys. Part 1: Phases and Phase Diagrams,” pp. 1–29, Idaho National Laboratory (2019).
  • L. L. BRIGGS and Y. I. CHANG, “Safety Analysis and Technical Basis for Establing an Interim Burnup Limit for Mark-V and Mark-VA Fuel Subassemblies in EBR-II,” Argonne National Laboratory (2018).
  • J. REST et al., U-Mo Fuels Handbook. Version 1.0, Argonne National Laboratory (2006).
  • B. D. MILLER et al., “Transmission Electron Microscopy Characterization of the Fission Gas Bubble Superlattice in Irradiated U–7wt%Mo Dispersion Fuels,” J. Nucl. Mater., 458, 115 (2015); http://dx.doi.org/10.1016/j.jnucmat.2014.12.012.
  • J. M. HARP, L. CAPRIOTTI, and F. CAPPIA, “Baseline Postirradiation Examination of the AFC-3C, AFC-3D, and AFC-4A Experiments,” Idaho National Laboratory (2018).
  • P. ZHOU et al., “Thermodynamic Modeling of the U-Nb-Zr Ternary System,” J. Nucl. Mater., 523, 157 (2019); http://dx.doi.org/10.1016/j.jnucmat.2019.05.045.
  • L. K. SUDDERTH et al., “Fabrication and Characterization of Candidate Alloys for Advanced LEU Fuel Concepts,” Idaho National Laboratory (2022).
  • R. D. MARIANI et al., “Metallic Fuels: The EBR-II Legacy and Recent Advances,” Procedia Chem., 7, 513 (2012).
  • J. P. COUZINIÉ et al., “Comprehensive Data Compilation on the Mechanical Properties of Refractory High-Entropy Alloys,” Data Brief, 21, 1622 (2018); http://dx.doi.org/10.1016/j.dib.2018.10.071.
  • S. GORSSE et al., “Database on the Mechanical Properties of High Entropy Alloys and Complex Concentrated Alloys,” Data Brief, 21, 2664 (2018); http://dx.doi.org/10.1016/j.dib.2018.11.111.
  • D. B. MIRACLE and O. N. SENKOV, “A Critical Review of High Entropy Alloys and Related Concepts,” Acta Mater., 122, 448 (2017).
  • O. N. SENKOV et al., “Mechanical Properties of Low-Density, Refractory Multi-Principal Element Alloys of the Cr–Nb–Ti–V–Zr System,” Mater. Sci. Eng., 565, 51 (2013); http://dx.doi.org/10.1016/j.msea.2012.12.018.
  • O. N. SENKOV, S. V. SENKOVA, and C. WOODWARD, “Effect of Aluminum on the Microstructure and Properties of Two Refractory High-Entropy Alloys,” Acta Mater., 68, 214 (2014); http://dx.doi.org/10.1016/j.actamat.2014.01.029.
  • O. N. SENKOV et al., “Low-Density, Refractory Multi-Principal Element Alloys of the Cr–Nb–Ti–V–Zr System: Microstructure and Phase Analysis,” Acta Mater., 61, 5, 1545 (2013); http://dx.doi.org/10.1016/j.actamat.2012.11.032.
  • R. D. MARIANI et al., “Lanthanides in Metallic Nuclear Fuels: Their Behavior and Methods for Their Control,” J. Nucl. Mater., 419, 1–3, 263 (2011); http://dx.doi.org/10.1016/j.jnucmat.2011.08.036.
  • J. SHI et al., “Microstructure and Mechanical Properties of Two Uranium-Containing High-Entropy Alloys,” J. Alloys Compd., 860, 158295 (2021); http://dx.doi.org/10.1016/j.jallcom.2020.158295.
  • H. HUANG et al., “Material Informatics for Uranium-Bearing Equiatomic Disordered Solid Solution Alloys,” Mater. Today Commun., 29, 102960 (2021); http://dx.doi.org/10.1016/j.mtcomm.2021.102960.
  • A. JAIN et al., “Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation,” APL Mater., 1, 011002 (2013); http://dx.doi.org/10.1063/1.4812323.
  • C. WEN et al., “Machine Learning Assisted Design of High Entropy Alloys with Desired Property,” Acta Mater., 170, 109 (2019); http://dx.doi.org/10.1016/j.actamat.2019.03.010.
  • X. YANG and Y. ZHANG, “Prediction of High-Entropy Stabilized Solid-Solution in Multi-Component Alloys,” Mater. Chem. Phys., 132, 2, 233 (2012); http://dx.doi.org/10.1016/j.matchemphys.2011.11.021.
  • C. J. WERNER, “MCNP Users Manual – Code Version 6.2,” Los Alamos National Laboratory (2017).
  • F. A. GARNER, “Radiation Damage in Austenitic Steels,” Comprehensive Nuclear Materials, pp. 33–95, R. J. M. KONINGS, Ed., Elsevier (2012).
  • A. G. WEISS et al., “A Sensitivity Analysis to Predict the Neutronics Behavior of Samples Irradiated in the VTR Rabbit System,” Ann. Nucl. Energy, 185, 109708 (2023); http://dx.doi.org/10.1016/j.anucene.2023.109708.
  • K. GEELHOOD and I. PORTER, “Modeling and Assessment of EBR-II Fuel with the US NRC’s Fast Fuel Performance Code,” Proc. TopFuel 2018, Prague, Czech Republic, September 2018.
  • Q. LIU et al., “Microstructure and Mechanical Properties of Ultra-Fine Grained MoNbTaTiV Refractory High-Entropy Alloy Fabricated by Spark Plasma Sintering,” J. Mater. Sci. Technol., 35, 11, 2600 (2019); http://dx.doi.org/10.1016/j.jmst.2019.07.013.
  • S. A. KUBE and J. SCHROERS, “Metastability in High Entropy Alloys,” Scr. Mater., 186, 392 (2020); http://dx.doi.org/10.1016/j.scriptamat.2020.05.049.
  • G. L. BEAUSOLEIL et al., “Spark Plasma Sintered, MoNbTi-Based Multi-Principal Element Alloys with Cr, V, and Zr,” J. Alloys Compd., 927, 167083 (2022); http://dx.doi.org/10.1016/j.jallcom.2022.167083.
  • B. H. TOBY and R. B. VON DREELE, “GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package,” J. Appl. Crystallogr., 46, 2, 544 (2013); http://dx.doi.org/10.1107/S0021889813003531.
  • V. F. SEARS, “Neutron Scattering Lengths and Cross Sections,” Neutron News, 3, 3, 26 (1992); http://dx.doi.org/10.1080/10448639208218770.
  • D. C. CRAWFORD, D. L. PORTER, and S. L. HAYES, “Fuels for Sodium-Cooled Fast Reactors: US Perspective,” J. Nucl. Mater., 371, 1, 202 (2007); http://dx.doi.org/10.1016/j.jnucmat.2007.05.010.
  • S. YANG et al., “Revisit the VEC Rule in High Entropy Alloys (HEAs) with High-Throughput CALPHAD Approach and Its Applications for Material Design—A Case Study with Al–Co–Cr–Fe–Ni System,” Acta Mater., 192, 11 (2020); http://dx.doi.org/10.1016/j.actamat.2020.03.039.
  • A. A. BAUER, F. A. ROUGH, and J. DOIG, “Constitution of Delta-Phase Alloys of the System Uranium-Molybdenum-Titanium,” Trans. Met. Soc., 212, 862 (1958).
  • G. H. BANNISTER and D. J. R. MURRAY, “Some Observations on Uranium-Molybdenum-Niobium Alloys,” J. Less-Common Metals, 2, 372 (1960); http://dx.doi.org/10.1016/0022-5088(60)90046-1.
  • O. S. IVANOV, “Isothermal Cross Sections for 560 °C, 500 °C and the Phase Diagram of the Triple System Uranium-Niobium-Molybdenum,” Structure of Alloys of Certain Systems Containing Uranium and Thorium, p. 200 (1963).
  • G. I. TEREKHOV, “The Phase Diagram and Structure of U-Nb-V Alloys,” Russ. Metall., 206 (1989).