203
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Determination of the Gas Plenum Temperature of the P2M Instrumented Fuel Rodlets on the Basis of a Thermal-Hydraulic Study of the Belgian Reactor 2 Pressurized Water Capsule

, ORCID Icon, , , , , , , , , , , , , , & show all
Pages 354-377 | Received 20 Mar 2023, Accepted 09 Oct 2023, Published online: 01 Dec 2023

References

  • V. D’AMBROSI et al., “P2M Simulation Exercise on Past Fuel Melting Irradiation Experiments: Main Outcomes on Fuel Melting Assessment in PWR Fuel,” Proc. TopFuel 2022 Light Water Reactor Fuel Performance Conf., Raleigh, North Carolina, October 9–13, 2022, p. 344, American Nuclear Society (2022).
  • V. D’AMBROSI et al., “P2M Simulation Exercise on Past Fuel Melting Irradiation Experiments,” Nucl. Technol., 210, 2, 189 (2023); https://doi.org/10.1080/00295450.2023.2194270.
  • M. BALES et al., “The NEA Framework for Irradiation Experiments (FIDES): A New Future for International Collaboration on Nuclear Fuel Research,” Proc. TopFuel 2022 Light Water Reactor Fuel Performance Conf., Raleigh, North Carolina, October 9–13, 2022, p. 719, American Nuclear Society (2022).
  • B. BOER and M. VERWERFT, “Qualification of the New Pressurized Water Capsule (PWC) for Fuel Testing at BR2,” Proc. European Research Reactor Conf., Virtual Event, September 26–30, 2021.
  • L. VERMEEREN et al., “Qualification of the On-Line Power Determination of Fuel Elements in Irradiation Devices in the BR2 Reactor,” NT.57/D089023/01/LV, SCK CEN (2005).
  • B. MICHEL et al., “Modeling of Pellet Cladding Interaction,” Comprehensive Nuclear Materials, Vol. 3, Chap. 3.22, pp. 677–712, R. J. M. KONINGS, Ed., Elsevier, Oxford (2012); https://doi.org/10.1016/B978-0-08-056033-5.00074-4.
  • J. SERCOMBE et al., “Modeling of Pellet Cladding Interaction,” Comprehensive Nuclear Materials, 2nd ed., Chap. 2.14, Vol. 2, pp. 417–465, R. J. M. KONINGS and R. E. STOLLER, Eds., Elsevier, Oxford (2020); https://doi.org/10.1016/B978-0-12-803581-8.00715-3.
  • T. B. BURLEY and M. D. FRESHLEY, “Internal Gas Pressure Behavior in Mixed-Oxide Fuel Rods Fuels During Irradiation,” Nucl. Appl. Technol., 9, 2, 233 (1970); https://doi.org/10.13182/NT70-A28812.
  • K. J. GEELHOOD, W. G. LUSCHER, and C. E. BEYER, “FRAPTRAN 1.4, A Computer Code for the Transient Analysis of Oxide Fuel Rods,” U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research (2011).
  • R. CALABRESE et al., “Upper Plenum Temperature Calculations: Comparison of TRANSURANUS with a 2-D Model Under Steady-State Conditions,” Proc. 23rd Int. Conf. Nuclear Energy for New Europe, Portorož, Slovenia, September 8–11, 2014, p. 918.1, Nuclear Society of Slovenia (2014).
  • M. ISHII, “Thermo-Fluid Dynamic Theory of Two-Phase Flow,” Collection de la Direction des Etudes et Recherches d’Electricite de France, No. 22, Eyrolles, Paris (1975).
  • T. CADIOU, E. STRATTA, and L. AUGIER, “Multi-Scale Study of an Innovative Safety System for Pressurized Water Reactors,” Nucl. Eng. Des., 387, 11 (2021); https://doi.org/10.1016/j.nucengdes.2021.111600.
  • S. MIMOUNI et al., “Computational Multi-Fluid Dynamics Predictions of Critical Heat Flux in Boiling Flow,” Nucl. Eng. Des., 299, 28 (2016).
  • A. GUELFI et al., “NEPTUNE: A New Software Platform for Advanced Nuclear Thermal Hydraulics,” Nucl. Sci. Eng., 156, 3, 281 (2007); https://doi.org/10.13182/NSE05-98.
  • J. P. MAÑES et al., “Validation of NEPTUNE-CFD Two-Phase Flow Models Using Experimental Data,” Sci. Technol. Nucl. Install., 2014, 185950 (2014); https://doi.org/10.1155/2014/185950.
  • S. MIMOUNI et al., “A Second-Order Turbulence Model Based on a Reynolds Stress Approach for Two-Phase Flow—Part I: Adiabatic Cases,” Sci. Technol. Nucl. Install., 2009, 792395 (2008); https://doi.org/10.1155/2009/792395.
  • S. MIMOUNI et al., “A Second Order Turbulence Model Based on a Reynolds Stress Approach for Two-Phase Boiling Flow—Part 1: Application to the ASU-Annular Channel Case,” Nucl. Eng. Des., 240, 9, 2233 (2010); https://doi.org/10.1016/j.nucengdes.2009.11.019.
  • C. SPEZIALE, S. SARKAR, and T. GATSKI, “Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach,” J. Fluid Mech., 227, 245 (1991).
  • M. ISHII and N. ZUBER, “Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows,” AIChE J., 25 (1979); https://doi.org/10.1002/aic.690250513.
  • N. ZUBER, “On the Dispersed Two-Phase Flow in the Laminar Flow Regime,” Chem. Eng. Sci., 19, 11, 897 (1964); https://doi.org/10.1016/0009-2509(64)85067-3.
  • A. TOMIYAMA et al., “Transverse Migration of Single Bubbles in Simple Shear Flow,” Chem. Eng. Sci., 57, 11, 1849 (2002); https://doi.org/10.1016/S0009-2509(02)00085-4.
  • R. M. WELLEK, A. K. AGRAWAL, and A. H. P. SKELLAND, “Shape of Liquid Drops Moving in Liquid Media,” AIChE J., 12, 5, 854 (1966); https://doi.org/10.1002/aic.690120506.
  • J. LAVIÉVILLE et al., “A Generalized Turbulent Dispersion Model for Bubbly Flow Numerical Simulation in NEPTUNE_CFD,” Nucl. Eng. Des., 312, 284 (2017); https://doi.org/10.1016/j.nucengdes.2016.11.003.
  • N. KURUL and M. PODOWSKI, “Multidimensional Effects in Forced Convection Subcooled Boiling,” Proc. 9th Int. Heat Transfer Conf., Jerusalem, Israel, 1990, Vol. 1, p. 21 (1990).
  • V. H. DEL VALLE and D. B. R. KENNING, “Subcooled Flow Boiling at High Heat Flux,” Int. J. Heat Mass Transfer, 28, 10, 1907 (1985); https://doi.org/10.1016/0017-9310(85)90213-3.
  • H. C. ÜNAL, “Maximum Bubble Diameter, Maximum Bubble-Growth Time and Bubble-Growth Rate During the Subcooled Nucleate Flow Boiling of Water up to 17.7 MN/m2,” Int. J. Heat Mass Transfer, 19, 6, 643 (1976); https://doi.org/10.1016/0017-9310(76)90047-8.
  • R. COLE, “A Photographic Study of Pool Boiling in the Region of the Critical Heat Flux,” AIChE J., 6, 4, 533 (1960); https://doi.org/10.1002/aic.690060405.
  • P. RUYER and N. SEILER, “Advanced Model for Polydispersion in Size in Boiling Flows,” La Houille Blanche, 95, 4, 65 (2009); https://doi.org/10.1051/lhb/2009046.
  • P. RUYER et al., “A Bubble Size Distribution Model for the Simulation of Bubbly Flows,” Proc. 6th Int. Conf. Multiphase Flows, Leipzig, Germany, 2007.
  • D. LAKEHAL et al., “Direct Numerical Simulation of Condensing Stratified Flow,” J. Heat Transfer, 130, 2, 021501 (2008); https://doi.org/10.1115/1.2789723.
  • W. YAO et al., “A Three-Dimensional Two-Fluid Modeling of Stratified Flow with Condensation for Pressurized Thermal Shock Investigations,” Nucl. Technol., 152, 129 (2005); https://doi.org/10.13182/NT05-A3665.
  • I. RUPP and C. PENIGUEL, “SYRTHES 5 User Manual,” Electricité de France Research, Development and Innovation (2021).
  • P. GOUAT, SCK CEN, “Communication of P2M-Q1 LHR Profiles,” Personal Communication (2022).
  • B. BOER, SCK CEN, “Communication of P2M-Q2 LHR Profile,” Personal Communication (2021).
  • P. GOUAT, SCK CEN, “Communication of P2M-Q2 Gamma Heating Profile,” Personal Communication (2022).
  • P. GOUAT, SCK CEN, “Communication of P2M-Q1 and P2M-D Gamma Heating Profiles,” Personal Communication (2022).
  • P. GOUAT, SCK CEN, “Communication of Gamma Heating Corrective Coefficients for PS-LVDT Materials,” Personal Communication (2022).
  • W. HEBEL and M. DECRÉTON, “Mechanisms of Critical Heat Flux in a Stagnant Water Annulus,” Multiphase Transport Fundamentals. Reactor Safety. Applications, pp. 601–623 (1980).
  • J. DEKEYSER, V. SOBOLEV, and M. DECRÉTON, “Heat Transfer Through Vertical Annulus with Stagnant Water,” Proc. 4th World Conf. Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Brussels, Belgium, June 2–6,1997, p. 2107 (1997).
  • A. V. GETLING, Rayleigh-Benard Convection: Structures and Dynamics, World Scientific (1998).
  • E. L. KOSCHMIEDER, Bénard Cells and Taylor Vortices, Cambridge University Press, Cambridge (1993).
  • E. M. SPARROW, R. J. GOLDSTEIN, and V. K. JONSSON, “Thermal Instability in a Horizontal Fluid Layer: Effect of Boundary Conditions and Non-Linear Temperature Profile,” J. Fluid Mech., 18, 513 (1964); https://doi.org/10.1017/S0022112064000386.
  • H. PETERSEN, “The Properties of Helium: Density, Specific Heats, Viscosity, and Thermal Conductivity at Pressures from 1 to 100 Bar and from Room Temperature to About 1800 K,” Risoe-R No. 224, Risø National Laboratory (1970).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.