602
Views
11
CrossRef citations to date
0
Altmetric
Technical Papers

A Multilevel in Space and Energy Solver for 3-D Multigroup Diffusion and Coarse-Mesh Finite Difference Eigenvalue Problems

ORCID Icon, ORCID Icon &
Pages 722-745 | Received 10 Oct 2018, Accepted 19 Dec 2018, Published online: 13 Feb 2019

References

  • K. S. SMITH, “Assembly Homogenization Techniques for Light Water Reactor Analysis,” Prog. Nucl. Energy, 17, 3, 303 (1986); https://doi.org/10.1016/0149-1970(86)90035-1.
  • K. S. SMITH and J. D. RHODES III, “Full-Core, 2-D, LWR Core Calculations with CASMO-4E,” Proc. PHYSOR 2002, Seoul, Korea, October 7–10, 2002.
  • A. ZHU et al., “An Optimally Diffusive Coarse Mesh Finite Difference Method to Accelerate Neutron Transport Calculations,” Ann. Nucl. Energy, 95, 116 (2016); https://doi.org/10.1016/j.anucene.2016.05.004.
  • MPACT TEAM, “MPACT Theory Manual Version 2.0.0,” CASL-U-2015-0078-000, Consortium for Advanced Simulation of Light Water Reactors (2015).
  • S. BALAY et al., “PETSc Users Manual,” ANL-95/11, Rev. 3.7, Argonne National Laboratory (2016).
  • M. HEROUX et al., “An Overview of Trilinos,” SAND2003-2927, Sandia National Laboratories (2003).
  • B. C. YEE, B. KOCHUNAS, and E. W. LARSEN, “A Multilevel in Space and Energy Solver for Multigroup Diffusion Eigenvalue Problems,” Nucl. Eng. Technol., 49, 6, 1125 (2017); https://doi.org/10.1016/j.net.2017.07.014.
  • B. C. YEE, B. KOCHUNAS, and E. W. LARSEN, “A Multilevel Diffusion Solver for Multi-Dimensional Transport Problems with CMFD,” Proc. PHYSOR 2018: Reactor Physics Paving the Way Towards More Efficient Systems, Cancun, Mexico, April 22–26, 2018.
  • B. C. YEE, “A Multilevel in Space and Energy Solver for Multigroup Diffusion and Coarse Mesh Finite Difference Eigenvalue Problems,” PhD Thesis, University of Michigan (2018).
  • E. L. WACHSPRESS, Iterative Solution of Elliptic Systems, Prentice Hall, Inc., Englewood Cliffs, New Jersey (1966).
  • S. F. McCORMICK, Multigrid Methods, Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania (1987).
  • W. L. BRIGGS, V. E. HENSON, and S. F. McCORMICK, A Multigrid Tutorial, Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania (2000).
  • U. TROTTENBERG, C. W. OOSTERLEE, and A. SCHULLER, Multigrid, Academic Press (2000).
  • J. I. YOON and H. G. JOO, “Two-Level Coarse Mesh Finite Difference Formulation with Multigroup Source Expansion Nodal Kernels,” J. Nucl. Sci. Technol., 45, 7, 668 (2008); https://doi.org/10.3327/jnst.45.668.
  • Z. ZHONG et al., “Implementation of Two-Level Coarse-Mesh Finite Difference Acceleration in an Arbitrary Geometry, Two-Dimensional Discrete Ordinates Transport Method,” Nucl. Sci. Eng., 158, 3, 289 (2008); https://doi.org/10.13182/NSE06-24TN.
  • R. VAN GEEMERT, “Synergies of Acceleration Methodologies for Whole-Core N/TH-Coupled Steady-State and Transient Computations,” Proc. PHYSOR 2006: Advances in Nuclear Analysis and Simulation, Vancouver, Canada, September 10–14, 2006, American Nuclear Society (2006).
  • R. VAN GEEMERT, “A Multi-Level Surface Rebalancing Approach for Efficient Convergence Acceleration of 3D Full Core Multi-Group Fine Grid Nodal Diffusion Iterations,” Ann. Nucl. Energy, 63, 22 (2014); https://doi.org/10.1016/j.anucene.2013.07.012.
  • E. W. LARSEN, “A Grey Transport Acceleration Method Far [sic] Time-Dependent Radiative Transfer Problems,” J. Comput. Phys., 78, 2, 459 (1988); https://doi.org/10.1016/0021-9991(88)90060-5.
  • P. F. NOWAK, “A Grey Diffusion Acceleration Method for Time-Dependent Radiative Transfer Calculation: Analysis and Application,” Proc. American Nuclear Society Topl. Mtg. Mathematical Methods and Supercomputing in Nuclear Applications (M&C+ SNA’93), Karlsruhe, Germany, April 19–23, 1993, Vol. 1, p. 33 (1993).
  • H. PARK et al., “A Consistent, Moment-Based, Multiscale Solution Approach for Thermal Radiative Transfer Problems,” Transp. Theory Stat. Phys., 41, 3–4, 284 (2012); https://doi.org/10.1080/00411450.2012.671224.
  • L. R. CORNEJO and D. Y. ANISTRATOV, “Nonlinear Diffusion Acceleration Method with Multigrid in Energy for k-Eigenvalue Neutron Transport Problems,” Nucl. Sci. Eng., 184, 4, 514 (2016); https://doi.org/10.13182/NSE16-78.
  • C. HAO, Y. XU, and T. J. DOWNAR, “Multi-Level Coarse Mesh Finite Difference Acceleration with Local Two-Node Nodal Expansion Method,” Ann. Nucl. Energy, 116, 105 (2018); https://doi.org/10.1016/j.anucene.2018.02.002.
  • Y. SAAD, Iterative Methods for Sparse Linear Systems, Vol. 82, Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania (2003).
  • L. N. TREFETHEN and D. BAU III, Numerical Linear Algebra, Vol. 50, Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania (1997).
  • T. J. DOWNAR et al., “PARCS: Purdue Advanced Reactor Core Simulator,” Proc. PHYSOR 2002, Seoul, Korea, October 7–10, 2002.
  • B. C. YEE et al., “Space-Dependent Wielandt Shifts for Multigroup Diffusion Eigenvalue Problems,” Nucl. Sci. Eng., 188, 2, 140 (2017); https://doi.org/10.1080/00295639.2017.1350001.
  • S. P. HAMILTON and T. M. EVANS, “Efficient Solution of the Simplified PN Equations,” J. Comput. Phys., 284, 155 (2015); https://doi.org/10.1016/j.jcp.2014.12.014.
  • B. COLLINS, S. HAMILTON, and S. STIMPSON, “Use of Generalized Davidson Eigenvalue Solver for Coarse Mesh Finite Difference Acceleration,” Proc. Int. Conf. Mathematics & Computational Methods Applied to Nuclear Science & Engineering (M&C 2017), Jeju, Korea, April 16–20, 2017.
  • E. R. DAVIDSON, “The Iterative Calculation of a Few of the Lowest Eigenvalues and Corresponding Eigenvectors of Large Real-Symmetric Matrices,” J. Comput. Phys., 17, 1, 87 (1975); https://doi.org/10.1016/0021-9991(75)90065-0.
  • R. B. MORGAN, “Davidson’s Method and Preconditioning for Generalized Eigenvalue Problems,” J. Comput. Phys., 89, 1, 241 (1990); https://doi.org/10.1016/0021-9991(90)90124-J.
  • R. B. MORGAN, “Generalizations of Davidson’s Method for Computing Eigenvalues of Large Nonsymmetric Matrices,” J. Comput. Phys., 101, 2, 287 (1992); https://doi.org/10.1016/0021-9991(92)90006-K.
  • R. E. ALCOUFFE, “The Multigrid Method for Solving the Two-Dimensional Multigroup Diffusion Equation,” Proc. Advances in Reactor Computations, Salt Lake City, Utah, March 28–31, 1983, p. 340, American Nuclear Society (1983).
  • R. S. SAMPATH, P. BARAI, and P. K. NUKALA, “A Parallel Multigrid Preconditioner for the Simulation of Large Fracture Networks,” J. Stat. Mech: Theory Exp., 2010, P03029 (2010); https://doi.org/10.1088/1742-5468/2010/03/P03029.
  • C. C. DOUGLAS, G. HAASE, and U. LANGER, “Multigrid Methods,” A Tutorial on Elliptic PDE Solvers and Their Parallelization, Vol. 16, Chap. 7, pp. 111–118, Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania (2003).
  • R. E. ALCOUFFE et al., “The Multi-Grid Method for the Diffusion Equation with Strongly Discontinuous Coefficients,” SIAM J. Sci. Stat. Comput., 2, 4, 430 (1981); https://doi.org/10.1137/0902035.
  • J. W. RUGE and K. STÜBEN, “Algebraic Multigrid,” Multigrid Methods, pp. 73–130, Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania (1987).
  • H. DE STERCK, U. M. YANG, and J. J. HEYS, “Reducing Complexity in Parallel Algebraic Multigrid Preconditioners,” SIAM J. Matrix Anal. Appl., 27, 4, 1019 (2006); https://doi.org/10.1137/040615729.
  • J. J. HU and A. PROKOPENKO, “MueLu: Multigrid Framework for Advanced Architectures,” Sandia National Laboratories, California; Sandia National Laboratories, New Mexico (2015).
  • A. T. GODFREY, “VERA Core Physics Benchmark Progression Problem Specifications,” CASL-U-2012-0131-004, Consortium for Advanced Simulation of Light Water Reactors, Oak Ridge National Laboratory (2014).
  • N. LARSEN, “Core Design and Operating Data for Cycles 1 and 2 of Peach Bottom 2,” EPRI-NP-563, Electric Power Research Institute (1978).
  • F. FRANCESCHINI et al., “Westinghouse VERA Test Stand: Zero Power Physics Test Simulations for the AP1000 PWR,” CASL-U-2014-0012-000, Consortium for Advanced Simulation of Light Water Reactors (2014).
  • Y. LIU et al., “A Full-Core Resonance Self-Shielding Method Using a Continuous-Energy Quasi–One-Dimensional Slowing-Down Solution that Accounts for Temperature-Dependent Fuel Subregions and Resonance Interference,” Nucl. Sci. Eng., 180, 3, 247 (2015); https://doi.org/10.13182/NSE14-65.
  • B. KOCHUNAS, A. FITZGERALD, and E. LARSEN, “Fourier Analysis of Iteration Schemes for k-Eigenvalue Transport Problems with Flux-Dependent Cross Sections,” J. Comput. Phys., 345, 294 (2017); https://doi.org/10.1016/j.jcp.2017.05.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.