2,202
Views
8
CrossRef citations to date
0
Altmetric
Technical Papers

A New Era of Nuclear Criticality Experiments: The First 10 Years of Radiation Test Object Operations at NCERC

ORCID Icon, , , , , , , , , , , , , , , & show all
Pages S80-S98 | Received 18 Jan 2021, Accepted 07 Apr 2021, Published online: 14 Oct 2021

References

  • D. HAYES et al., “Integral Experiments at the US National Criticality Experiments Research Center (NCERC), ” Proc. 2nd Topl. Mtg. Advances in Nuclear Nonproliferation Technology and Policy Conf.: Bridging the Gaps in Nuclear Nonproliferation (ANTPC 2016), Santa Fe, New Mexico, September 25–30, 2016, American Nuclear Society (2016); https://www.scopus.com/inward/record.uri?eid=2-s2.0-85027830260&partnerID=40&md5=189f840a772ba6ce1a8d32427001bee4 (current as of Jan. 18, 2021).
  • A. HANSON, R. SERBER, and J. WILLIAMS, “Multiplication of Large 25 Spheres,” LAMS-230, Los Alamos Scientific Laboratory (1945).
  • H. ANDERSON, “Neutron Multiplication in Spheres of 25,” LA-402, Los Alamos Scientific Laboratory (1945).
  • R. CARTER, J. HINTON, and L. KING, “Critical Mass Measurements for a 25 Sphere in Tu and WC Tampers,” LA-442, Los Alamos Scientific Laboratory (1945).
  • T. McLAUGHLIN et al., “A Review of Criticality Accidents,” LA-13638, Los Alamos National Laboratory (2000).
  • R. SCHREIBER, “Pajarito Safety Regulations,” LAMS-456, Los Alamos Scientific Laboratory (1947).
  • D. LOAIZA and D. GEHMAN, “End of an Era for the Los Alamos Critical Experiments Facility: History of Critical Assemblies and Experiments (1946–2004),” Ann. Nucl. Energy, 33, 17, 1339 (2006); https://doi.org/10.1016/j.anucene.2006.09.009.
  • R. SANCHEZ et al., “A New Era of Nuclear Criticality Experiments, The First 10 Years of Planet Operations at NCERC,” Nucl. Sci. Eng., 195, S1 (2021); https://doi.org/10.1080/00295639.2021.1951077.
  • N. THOMPSON et al., “A New Era of Nuclear Criticality Experiments, The First 10 Years of Comet Operations at NCERC,” Nucl. Sci. Eng., 195, S17 (2021); https://doi.org/10.1080/00295639.2021.1947105.
  • D. HAYES et al., “A New Era of Nuclear Criticality Experiments, The First 10 Years of Flattop Operations at NCERC,” Nucl. Sci. Eng., 195, S37 (2021); https://doi.org/10.1080/00295639.2021.1947104.
  • J. GODA et al., “A New Era of Nuclear Criticality Experiments, The First 10 Years of Godiva IV Operations at NCERC,” Nucl. Sci. Eng., 195, S55 (2021); https://doi.org/10.1080/00295639.2021.1947103.
  • G. E. HANSEN and H. C. PAXTON, “Thor, A Thorium-Reflected Plutonium-Metal Critical Assembly,” Nucl. Sci. Eng., 71, 3, 287 (1979); https://doi.org/10.13182/NSE79-A19065.
  • A. ROBBA, E. DOWDY, and H. ATWATER, “Neutron Multiplication Measurements Using Moments of the Neutron Counting Distribution,” Nucl. Instrum. Meth. Phys. Res., 215, 3, 473 (1983); https://doi.org/10.1016/0167-5087(83)90481-7.
  • T. CUTLER, J. ARTHUR, and J. HUTCHINSON, “Copper- and Polyethylene-Reflected Plutonium-Metal-Sphere Subcritical Measurements,” International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03/IX, FUND-NCERC-PU-HE3-MULT-003, NEA 7328, Organisation for Economic Co-operation and Development, Nuclear Energy Agency (2019); https://doi.org/10.1787/e2703cd5-en.
  • J. HUTCHINSON et al., “Plutonium Sphere Reflected by Beryllium,” International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA7328, Organisation for Economic Co-operation and Development,Nuclear Energy Agency (2007); https://doi.org/10.1787/e2703cd5-en.
  • H. PAXTON and N. PRUVOST, “Critical Dimensions of Systems Containing 235U, 239Pu, and 233U,” LA-10860-MS, Los Alamos National Laboratory (1986).
  • S. SEITZ et al., “Radiation Detection Evaluation: RadAssessor Characterizes Integrated Findings,” Proc. IEEE Symp. Nuclear Science, Fajardo, Puerto Rico, October 23–29, 2005, Vol. 1, p. 288 (2005); https://doi.org/10.1109/NSSMIC.2005.1596255.
  • J. HUTCHINSON, “Subcritical Measurements of a Plutonium Sphere with Various Reflectors,” Trans. Am. Nucl. Soc., 99, 371 (2008).
  • J. MATTINGLY, “Polyethylene-Reflected Plutonium Metal Sphere: Subcritical Neutron and Gamma Measurements,” SAND2009-5804, Sandia National Laboratories (2009).
  • J. LI and J. MATTINGLY, “SNAP-3 Response Function and Its Application,” Trans. Am. Nucl. Soc., 108, 491 (2013).
  • J. HUTCHINSON and T. VALENTINE, “Subcritical Measurements of a Plutonium Sphere Reflected by Polyethylene and Acrylic,” Nucl. Sci. Eng., 161, 357 (2009); https://doi.org/10.13182/NSE161-357.
  • J. HUTCHINSON and J. BESS, “Subcritical Noise Measurements with a Nickel-Reflected Plutonium Sphere,” Nucl. Sci. Eng., 163, 285 (2009); https://doi.org/10.13182/NSE163-285.
  • E. SHORES and B. TEMPLE, “Metallic Plutonium Sphere Multiplication Calculations,” Proc. 15th Topl. Mtg. Radiation Protection and Shielding Division, Atlanta, Georgia, April 13–18, 2008, American Nuclear Society (2008).
  • E. SHORES et al., “Neutron Transmission Calculations for Several Moderated Plutonium Systems,” Proc. 2010 Topl. Mtg. Radiation Protection and Shielding Division, Las Vegas, Nevada, April 2010, American Nuclear Society (2010).
  • S. O’BRIEN, J. MATTINGLY, and D. ANISTRATOV, “Sensitivity Analysis of Neutron Multiplicity Counting Statistics Using First-Order Perturbation Theory and Application to a Subcritical Plutonium Metal Benchmark,” Nucl. Sci. Eng., 185, 3, 406 (2017); https://doi.org/10.1080/00295639.2016.1272988.
  • R. EVANS, J. LI, and J. MATTINGLY, “Adjoint Sensitivity Analysis in a Large-Scale Subcritical Plutonium Benchmark,” Trans. Am. Nucl. Soc., 108, 487 (2013).
  • R. T. EVANS, J. K. MATTINGLY, and D. G. CACUCI, “Sensitivity Analysis and Data Assimilation in a Subcritical Plutonium Metal Benchmark,” Nucl. Sci. Eng., 176, 3, 325 (2014); https://doi.org/10.13182/NSE13-24.
  • A. CLARK and J. MATTINGLY, “Data Assimilation of Nuclear Cross Sections Applied to Neutron Multiplicity Counting Experiments,” Trans. Am. Nucl. Soc., 118, 775 (2018).
  • D. G. CACUCI, R. FANG, and J. A. FAVORITE, “Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: I. Effects of Imprecisely Known Microscopic Total and Capture Cross Sections,” Energies, 12, 21, 4219 (2019); https://doi.org/10.3390/en12214219.
  • A. CLARK, J. MATTINGLY, and J. FAVORITE, “Application of Neutron Multiplicity Counting Experiments to Optimal Cross-Section Adjustments,” Nucl. Sci. Eng., 194, 4, 308 (2020); https://doi.org/10.1080/00295639.2019.1698267.
  • G. TUCK, “Enriched Uranium-Metal Measurements, No. 1,” RFP-907, The Dow Chemical Company, Rocky Flats (1967).
  • R. ROTHE, “Extrapolated Experimental Critical Parameters of Unreflected and Steel-Reflected Massive Enriched Uranium Metal Spherical and Hemispherical Assemblies,” INEEL/EXT-97-01401, Idaho National Engineeringand Environmental Laboratory (1997).
  • R. SANCHEZ and D. LOAIZA, “Plutonium Sphere Surrounded by Highly Enriched Uranium,” International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA 7328,Organisation for Economic Co-operation and Development, Nuclear Energy Agency (2005); https://doi.org/10.1787/e2703cd5-en.
  • D. LOAIZA, R. BREWER, and R. SANCHEZ, “Neptunium-237 Sphere Surrounded by Hemi-Spherical Shells of Highly Enriched Uranium,” International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC/(95)03/I, Specifications, Organisation for Economic Co-operation and Development, Nuclear Energy Agency (2009).
  • C. GOULDING et al., “Determining keff of Subcritical Uranium Systems Using Spontaneous Fission, (α,n), and Photoneutron Sources,” Proc. 6th Int. Conf. Nuclear Criticality Safety, Versailles, France, September 19–23, 1999.
  • A. GOULDING, W. MYERS, and C. HOLLAS, “Subcritical Measurements of Uranium Shells,” Trans. Am. Nucl. Soc., 79, 180 (1998).
  • G. ESTES and C. GOULDING, “Subcritical Multiplication Determination Studies,” Proc. 5th Int. Conf. Nuclear Criticality Safety, Albuquerque, New Mexico, September 17–22, 1995.
  • C. MOSS, C. HOLLAS, and W. MYERS, “Active Interrogation of Highly Enriched Uranium,” Proc. 11th Int. Conf. Modern Trends in Activation Analysis, Guildford, United Kingdom, June 20–25, 2004.
  • C. MOSS et al., “Neutron Detectors for Active Interrogation of Highly Enriched Uranium,” IEEE Trans. Nucl. Sci., 51, 4, 1677 (2004); https://doi.org/10.1109/TNS.2004.832992.
  • W. MYERS et al., “Photon and Neutron Active Interrogation of Highly Enriched Uranium,” AIP Conf. Proc., 769, 1688 (2004).
  • C. HOLLAS, C. GOULDING, and W. MYERS, “Determination of Neutron Multiplication of Subcritcal HEU Systems Using Delayed Neutrons,” Nucl. Instrum. Meth. Phys. Res. A, 543, 559 (2005); https://doi.org/10.1016/j.nima.2004.12.016.
  • G. ESTES and R. BROCKHOFF, “MCNP Multiplication Analysis of Subcritical HEU Experiments,” Trans. Am. Nucl. Soc., 79, 182 (1998).
  • G. ESTES et al., “Computational Analysis of HEU Subcritical Multiplication Experiments,” Proc. 6th Int. Conf. Nuclear Criticality Safety, Versailles, France, September 19–23, 1999.
  • R. LITTLE, M. CHADWICK, and W. MYERS, “Detection of Highly Enriched Uranium Through Active Interrogation,” Proc. 11th Int. Conf. Nuclear Reaction Mechanisms, Varenna, Italy, June 12–16, 2006.
  • D. YEAMANS et al., “Fabricating a Tungsten Shielded and Nickel Clad Neptunium Sphere,” LA-UR-01-3786, Los Alamos National Laboratory (2001).
  • D. LOAIZA et al., “Results and Analysis of the Spherical 237Np Critical Experiment Surrounded by Highly Enriched Uranium Hemispherical Shells,” Nucl. Sci. Eng., 152, 1, 65 (2006); https://doi.org/10.13182/NSE06-A2564.
  • R. SANCHEZ et al., “Criticality of a 237Np Sphere,” Nucl. Sci. Eng., 158, 1, 1 (2008); https://doi.org/10.13182/NSE08-A2734.
  • W. MYERS, C. GOULDING, and C. HOLLAS, “Sub-Critical Measurements in Support of the Los Alamos Neptunium Critical Experiments,” Trans. Am. Nucl. Soc., 98, 197 (2008).
  • R. UHRIG, Random Noise Techniques in Nuclear Reactor Systems, The Ronald Press Company (1970).
  • J. HUTCHINSON et al., “Subcritical Multiplication Experiments & Simulations: Overview and Recent Advances,” Proc. Advances in Nuclear Nonproliferation Technology and Policy Conf., Santa Fe, New Mexico, September 25–30, 2016, American Nuclear Society (2016).
  • International Handbook of Evaluated Criticality Safety Benchmark Experiments/Nuclear Energy Agency, Organisation for Economic Co-operation and Development, Nuclear Energy Agency; https://doi.org/10.1787/e2703cd5-en.
  • T. VALENTINE, “Polyethylene-Reflected Plutonium Metal Sphere Subcritical Noise Measurements,” International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC/(95)03/I, SUB-PU-MET-FAST-001, Organisation for Economic Co-operation and Development, Nuclear Energy Agency.
  • B. RICHARD et al., “Nickel-Reflected Plutonium Metal Sphere Subcritical Measurements,” Trans. Am. Nucl. Soc., 111, 879 (2014).
  • B. RICHARD and J. HUTCHINSON, “Nickel Reflected Plutonium Metal Sphere Subcritical Measurements,” International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA 7328, Organisation for Economic Co-operation and Development, Nuclear Energy Agency (2016); https://doi.org/10.1787/e2703cd5-en.
  • J. HUTCHINSON et al., “Tungsten-Reflected Subcritical Measurements,” Trans. Am. Nucl. Soc., 112, 460 (2015).
  • J. HUTCHINSON et al., “Recent Nuclear Criticality Safety Program Technical Accomplishments: Subcritical Benchmark of the Berp Ball Reflected by Tungsten,” Trans. Am. Nucl. Soc., 115, 711 (2016).
  • B. RICHARD and J. HUTCHINSON, “Tungsten-Reflected Plutonium-Metal-Sphere Subcritical Measurements,” International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA 7328, Organisation for Economic Co-operation and Development, Nuclear Energy Agency (2016); https://doi.org/10.1787/e2703cd5-en.
  • D. CIFARELLI and W. HAGE, “Models for a Three-Parameter Analysis of Neutron Signal Correlation Measurements for Fissile Material Assay,” Nucl. Instrum. Meth. Phys. Res. A, 251, 3, 550 (1986); https://doi.org/10.1016/0168-9002(86)90651-0.
  • R. FEYNMAN, F. D. HOFFMANN, and R. SERBER, “Dispersion of the Neutron Emission in U-235 Fission,” J. Nucl. Energy, 3, 1, 64 (1956); https://doi.org/10.1016/0891-3919(56)90042-0.
  • J. HUTCHINSON et al., “Measurements on a Subcritical Copper-Reflected Aphase Plutonium (Scrap) Sphere,” Trans. Am. Nucl. Soc., 117, 832 (2017).
  • R. BAHRAN and J. HUTCHINSON, “Subcritical Copper-Reflected α-Phase Plutonium (SCRαP) Integral Experiment Design,” Trans. Am. Nucl. Soc., 114, 527 (2016).
  • A. McSPADEN et al., “Neptunium Sphere Subcritical Observation (NESO) Final Experiment Design Update,” Trans. Am. Nucl. Soc., 119, 781 (2018).
  • R. BAHRAN, T. CUTLER, and J. HUTCHINSON, “Neptunium Subcritical Observation (NESO) Integral Benchmark Experiment Design,” Trans. Am. Nucl. Soc., 117, 853 (2017).
  • T. CUTLER, M. NELSON, and J. HUTCHINSON, “Deciphering the Binning Method Uncertainty in Neutron Multiplicity Measurements,” Trans. Am. Nucl. Soc., 111, 846 (2014).
  • J. ARTHUR et al., “Improved Figure of Merit for Feynman Histograms,” Trans. Am. Nucl. Soc., 117, 983 (2017).
  • J. HUTCHINSON et al., “Prompt Neutron Decay Constant Fitting Using the Rossi-Alpha and Feynman Variance-to-Mean Methods,” Trans. Am. Nucl. Soc., 117, 986 (2017).
  • J. HUTCHINSON et al., “Validation of Statistical Uncertainties in Subcritical Benchmark Measurements: Part II – Measured Data,” Ann. Nucl. Energy, 125, 342 (2019); https://doi.org/10.1016/j.anucene.2018.10.021.
  • J. D. HUTCHINSON et al., “Estimation of Uncertainties for Subcritical Benchmark Measurements,” Proc. Int. Conf. Nuclear Criticality Safety, Charlotte, North Carolina, September 13–17, 2015, American Nuclear Society (2015).
  • J. HUTCHINSON et al., “Comparison of Predicted and Measured Subcritical Benchmark Uncertainties as a Function of Counting Time,” Trans. Am. Nucl. Soc., 119, 809 (2018).
  • J. HUTCHINSON et al., “Reproducibility of Subcritical Measurements: Five Years of Plutonium Sphere Data,” Trans. Am. Nucl. Soc., 107, 638 (2012).
  • J. M. VERBEKE, “Neutron Multiplicity Counting: Credible Regions for Reconstruction Parameters,” Nucl. Sci. Eng., 182, 4, 481 (2016); https://doi.org/10.13182/NSE15-35.
  • S. WALSTON et al., “Analysis of Fast Neutron Data from a Fresh Fuel Assembly,” Proc. 61st INMM Virtual Annual Mtg., July 12–16, 2020, Institute of Nuclear Materials Management (2020).
  • A. McSPADEN, M. NELSON, and J. HUTCHINSON, “Eliminating Detector Response in Neutron Multiplicity Measurements for Model Evaluation,” Trans. Am. Nucl. Soc., 117, 979 (2017).
  • A. CLARK et al., “Sensitivity Analysis and Uncertainty Quantification of the Feynman Y and Sm2,” Trans. Am. Nucl. Soc., 119, 805 (2018).
  • A. McSPADEN, M. NELSON, and J. HUTCHINSON, “A Neutron Multiplicity Measurement Parameter for Neutron Source Verification,” Proc. Embedded Topl. Mtg. Advances in Nuclear Nonproliferation Technology and Policy Conference 2018 (ANTPC 2018), Orlando, Florida, November 11–15, 2018, p. 97, American Nuclear Society (2018).
  • A. SOOD et al., “Generating List-Mode Data for Simulated Subcritical Neutron Measurements Using MCNP II,” Trans. Am. Nucl. Soc., 107, 619 (2012).
  • J. HUTCHINSON et al., “Evaluation of Measured and Simulated List-Mode Data for Subcritical Systems,” Trans. Am. Nucl. Soc., 107, 698 (2012).
  • K. CLARK et al., “Comparison of MCNP-Based Transport Codes for Subcritical Calculations,” Trans. Am. Nucl. Soc., 107, 609 (2012).
  • A. SOOD et al., “A Review of Recent R&D Efforts in Sub-Critical Multiplication Measurements and Simulations,” Trans. Am. Nucl. Soc., 111, 799 (2014).
  • K. CLARK, J. HUTCHINSON, and A. SOOD, “Characterization of the NPOD3 Detectors in MCNP5 and MCNP6,” Trans. Am. Nucl. Soc., 110, 306 (2014).
  • P. TALOU et al., “Prompt Fission Neutrons and Gamma Rays in a Monte Carlo Hauser-Feshbach Formalism,” Physics Procedia, 47, 39 (2013); https://doi.org/10.1016/j.phpro.2013.06.007.
  • C. HAGMANN, J. RANDRUP, and R. VOGT, “FREYA—A New Monte Carlo Code for Improved Modeling of Fission Chains,” IEEE Trans. Nucl. Sci., 60, 2, 545 (2013); https://doi.org/10.1109/TNS.2013.2251425.
  • J. ARTHUR et al., “Validating the Performance of Correlated Fission Multiplicity Implementation in Radiation Transport Codes with Subcritical Neutron Multiplication Benchmark Experiments,” Ann. Nucl. Energy, 120, 348 (2018); https://doi.org/10.1016/j.anucene.2018.05.051.
  • J. A. ARTHUR et al., “Comparison of the Performance of Various Correlated Fission Multiplicity Monte Carlo Codes,” Tran. Am. Nucl. Soc., 115, 924 (2016).
  • J. ARTHUR et al., “Genetic Algorithm for Nuclear Data Evaluation Applied to Subcritical Neutron Multiplication Inference Benchmark Experiments,” Ann. Nucl. Energy, 133, 853 (2019); https://doi.org/10.1016/j.anucene.2019.07.024.
  • J. HUTCHINSON, A. SOOD, and M. SMITH-NELSON, “Subcritical Sensitivity Measurements Using the Thor Core,” Trans. Am. Nucl. Soc., 109, 819 (2013).
  • R. BAHRAN et al., “List-Mode Simulations of the Subcritical Thor Core Benchmark Sensitivity Experiments,” Trans. Am. Nucl. Soc., 111, 805 (2014).
  • B. KIEDROWSKI and A. SOOD, “Prototype Fixed-Source Sensitivity Capability in MCNP6 Applied to Subcritical Thor Core Measurements,” Trans. Am. Nucl. Soc., 109, 853 (2013).
  • Consortium for Nonproliferation Enabling Capabilities website (2015); https://cnec.ncsu.edu/ (current as of Jan. 18, 2021).
  • Consortium for Verification Technology website (2015); https://cvt.engin.umich.edu/ (current as of Jan. 18, 2021).
  • J. MUELLER and J. MATTINGLY, “Using Anisotropies in Prompt Fission Neutron Coincidences to Assess the Neutron Multiplication of Highly Multiplying Subcritical Plutonium Assemblies,” Nucl. Instrum. Meth. Phys. Res. A, 825, 87 (2016); https://doi.org/10.1016/j.nima.2016.04.027.
  • J. MUELLER and J. MATTINGLY, “Passive One-Dimensional Self-Transmission Imaging of Subcritical Metallic Plutonium Assemblies,” Nucl. Instrum. Meth. Phys. Res. A, 903, 277 (2018); https://doi.org/10.1016/j.nima.2018.06.070.
  • M. STREICHER et al., “Special Nuclear Material Characterization Using Digital 3-D Position Sensitive CdZnTe Detectors and High Purity Germanium Spectrometers,” IEEE Trans. Nucl. Sci., 63, 5, 2649 (2016); https://doi.org/10.1109/TNS.2016.2593631.
  • M. STREICHER et al., “A Method to Estimate the Atomic Number and Mass Thickness of Intervening Materials in Uranium and Plutonium Gamma-Ray Spectroscopy Measurements,” IEEE Trans. Nucl. Sci., 63, 5, 2639 (2016); https://doi.org/10.1109/TNS.2016.2606763.
  • J. NATTRESS et al., “Discriminating Uranium Isotopes Using the Time-Emission Profiles of Long-Lived Delayed Neutrons,” Phys. Rev. Applied, 10, 024049 (2018); https://doi.org/10.1103/PhysRevApplied.10.024049.
  • K. OGREN, J. NATTRESS, and I. JOVANOVIC, “Spectroscopic Fast Neutron Transmission Imaging in a Treaty Verification Setting,” AIP Adv., 8, 1, 015205 (2018); https://doi.org/10.1063/1.5004698.
  • M. C. HAMEL et al., “Active Neutron and Gamma-Ray Imaging of Highly Enriched Uranium for Treaty Verification,” Nature Sci. Reports, 7, 1, 7997 (2017); https://doi.org/10.1038/s41598-017-08253-x.
  • S. CLARKE et al., “Detectors for Active Interrogation Applications,” Physics Procedia, 90, 266 (2017); https://doi.org/10.1016/j.phpro.2017.09.006. Proc.Conf. Application of Accelerators in Research and Industry (CAARI 2016), Fort Worth, Texas, October 30–November 4, 2016.
  • W. M. STEINBERGER et al., “Imaging Special Nuclear Material Using a Handheld Dual Particle Imager,” Nature Sci. Reports, 10, 1, 1855 (2020); https://www.nature.com/articles/s41598-020-58857-z
  • R. B. HAYES and R. P. O’MARA, “Retrospective Characterization of Special Nuclear Material in Time and Space,” Radiat. Meas., 133, 106301 (2020); https://doi.org/10.1016/j.radmeas.2020.106301.
  • K. HENDERSON et al., “Proximity-Based Sensor Fusion of Depth Cameras and Isotropic Rad-Detectors,” IEEE Trans. Nucl. Sci., 67, 5, 840 (2020); https://doi.org/10.1109/TNS.2020.2967214.
  • M. GÖTTSCHE, J. SCHIRM, and A. GLASER, “Low-Resolution Gamma-Ray Spectrometry for an Information Barrier Based on a Multi-Criteria Template-Matching Approach,” Nucl. Instrum. Meth. Phys. Res. A, 840, 139 (2016); https://doi.org/10.1016/j.nima.2016.10.013.
  • A. GLASER et al., “Physical Public Templates for Nuclear Warhead Verification,” Science & Global Security, 28, 1, 48 (2020); https://doi.org/10.1080/08929882.2020.1728885.
  • M. Y. HUA et al., “Measurement Uncertainty of Rossi-Alpha Neutron Experiments,” Ann. Nucl. Energy, 147, 107672 (2020); https://doi.org/10.1016/j.anucene.2020.107672.
  • M. HUA et al., “Rossi-Alpha Measurements of Fast Plutonium Metal Assemblies Using Organic Scintillators,” Nucl. Instrum. Meth. Phys. Res. A, 959, 163507 (2020); https://doi.org/10.1016/j.nima.2020.163507.
  • M. HUA et al., “Validation of the Two-Region Rossi-Alpha Model for Reflected Assemblies,” Nucl. Instrum. Meth. Phys. Res. A, 981, 164535 (2020); https://doi.org/10.1016/j.nima.2020.164535.
  • J. A. GOMEZ et al., “Results of Three Neutron Diagnosed Subcritical Experiments,” Nucl. Sci. Eng., 193, 5, 537 (2019); https://doi.org/10.1080/00295639.2018.1545956.
  • G. McKENZIE, J. HUTCHINSON, and W. MYERS, “Prompt Neutron Decay Constant Measurements on a Polyethylene-Reflected Sphere of Highly Enriched Uranium,” Trans. Am. Nucl. Soc., 117, 997 (2017).
  • M. HUA et al., “Derivation of the Two-Exponential Probability Density Function for Rossi-Alpha Measurements of Reflected Assemblies and Validation for the Special Case of Shielded Measurements,” Nucl. Sci. Eng., 194, 1, 56 (2020); https://doi.org/10.1080/00295639.2019.1654327.
  • Nuclear Science and Security Consortium website (2017); https://nssc.berkeley.edu/ (current as of Jan. 18, 2021).
  • LANL-Keepin Nonproliferation Science Summer Program website (2017); https://nssc.berkeley.edu/events/nssc-lanl-summer-program/ (current as of Jan. 18, 2021).