1,262
Views
3
CrossRef citations to date
0
Altmetric
Technical Papers

Validation and Uncertainty Quantification of Transient Reflood Models Using COBRA-TF and Machine Learning Techniques Based on the NRC/PSU RBHT Benchmark

, &
Pages 967-986 | Received 11 Mar 2022, Accepted 06 Jun 2022, Published online: 28 Jul 2022

References

  • K. G. PEARSON, C. A. COOPER, and D. JOWITT, “Reflooding Experiments on a 49-Rod Cluster Containing a Long 90% Blockage,” UKAEA Report AEEW-R1591 (1983).
  • K. G. PEARSON, C. A. COOPER, and D. JOWITT, “The THETIS 80% Blocked Cluster Experiment. Part 4. Gravity Reflood Experiments,” Report AEEW-R1766, UK Atomic Energy Authority (1984).
  • C. A. COOPER, K. G. PEARSON, and D. JOWITT, “The THETIS 80% Blocked Cluster Experiment. Part 3. Forced Reflood Experiments,” AEEW-R1765, UK Atomic Energy Authority (1984).
  • P. IHLE and K. RUST, FEBA—Flooding Experiments with Blocked Arrays Evaluation Report, KfK 3657, Karlsruhe Institute of Technology (1984).
  • P. IHLE and K. RUST, “SEFLEX, Fuel Rod Simulator Effects in Flooding Experiments. Part 1,” Evaluation Report KfK–4024, Karlsruhe Institute of Technology (1986).
  • P. IHLE and K. RUST, “PWR Reflood Experiments Using Full Length Bundles of Rods with Zircaloy Cladding and Alumina Pellets,” Nucl. Eng. Des., 99, 223 (1987); https://doi.org/10.1016/0029-5493(87)90123-3.
  • K. G. PEARSON and M. K. DENHAM, “Achilles Unballooned Cluster Experiments—Part 1: Description of the Achilles Rig, Test Section and Experimental Procedures,” Technical Report AEEW-R 2336, UK Atomic Energy Authority, Winfrith Technology Centre (1989).
  • J. STUCKERT et al., “Experimental Results of Reflood Bundle Test Quench-14 with M5 Cladding Tubes.” Proc. 17th Int. Conf. Nuclear Engineering (ICONE-17), Brussels, Belgium, July 12–16, 2009.
  • M. STEINBRÜCK et al., “Synopsis and Outcome of the QUENCH Experimental Program,” Nucl. Eng. Des., 240, 1714 (2010); https://doi.org/10.1016/j.nucengdes.2010.03.021.
  • N. LEE et al., “PWR FLECHT-SEASET Unblocked Bundle, Forced and Gravity Reflood Task Data Evaluation and Analysis Report,” EPRI NP-2013; NUREG/CR-2256; WCAP-9891, Westinghouse Electric Corporation, Monroeville, Pennsylvania (1982).
  • L. E. HOCHREITER, “FLECHT-SEASET Program Final Report,” NUREG/CR-4167, U.S. Nuclear Regulatory Commission (1985).
  • L. E. HOCHREITER et al., “Rod Bundle Heat Transfer Test Facility Test Plan and Design,” NUREG/CR-6975, U.S. Nuclear Regulatory Commission (2010).
  • L. E. HOCHREITER et al., “RBHT Reflood Heat Transfer Experiments Data and Analysis,” NUREG/CR-6980, U.S. Nuclear Regulatory Commission (2012).
  • S. K. MOON et al., “Assessment of the KAERI 6×6 Reflood Experiment Using the SPACE Code.” Proc. ICAPP 2011, Nice, France, May 2–5, 2011.
  • W. JAEGER and V. H. S. ESPINOZA, “Uncertainty and Sensitivity Study in the Frame of TRACE Validation for Reflood Experiment,” Nucl. Technol., 184, 3, 333 (2013); https://doi.org/10.13182/NT184-333.
  • O. A. BERAR, A. PROŠEK, and B. MAVKO, “RELAP5 and TRACE Assessment of the Achilles Natural Reflood Experiment,” Nucl. Eng. Des., 261, 306 (2013); https://doi.org/10.1016/j.nucengdes.2013.05.007.
  • D. WICAKSONO, O. ZERKAK, and A. PAUTZ, “A Methodology for Global Sensitivity Analysis of Transient Code Output Applied to a Reflood Experiment Model Using TRACE.” Proc. NURETH-16, Chicago, Illinois, August 30–September 4, 2015.
  • M. ZAKIR, “On the Development of a TRACE Model for the Study of Reflooding in BWR Parallel Channels,” MS Thesis, Chalmers University of Technology, Department of Applied Physics, Gothenburg, Sweden (2015).
  • B. G. HUH, A. J. CHEONG, and K. W. LEE, “Evaluation of TRACE Spacer Grid Model with FLECHT-SEASET Reflood Test,” NUREG/IA-0481, U.S. Nuclear Regulatory Commission (2017).
  • B. G. HUH, A. J. CHEONG, and K. W. LEE, “TRACE Assessment for Effect of Spacer Grid in RBHT Reflood Heat Transfer Experiments,” NUREG/IA-0480, U.S. Nuclear Regulatory Commission (2018).
  • G. R. GARRETT et al., “Effects of System Parameters on the Two-Phase Flow and Heat Transfer Behavior in a Rod Bundle.” Proc. 4th Thermal and Fluid Engineering Conf. (TFEC2019), Las Vegas, Nevada, April 14–17, 2019.
  • T. S. CHOI and H. C. NO, “Improvement of the Reflood Model of RELAP5/MOD3.3 Based on the Assessments Against FLECHT-SEASET Tests,” Nucl. Eng. Des., 240, 832 (2010); https://doi.org/10.1016/j.nucengdes.2009.11.043.
  • T. S. CHOI and H. C. NO, “An Improved RELAP5/MOD3.3 Reflood Model considering the Effect of Spacer Grids,” Nucl. Eng. Des., 250, 613 (2012); https://doi.org/10.1016/j.nucengdes.2012.06.025.
  • G. GEROVA et al., “Modeling and Simulation of the QUENCH 12 Experiment with the RELAP/SCDAPSIM/MOD3.5 Code,” AIP Conf. Proc., 2048, 020019 (2018).
  • S. LUTSANYCH, F. MORETTI, and F. D. AURIA, “Validation of CATHARE TH-SYS Code Against Experimental Reflood Tests,” Proc. NURETH-16, Chicago, Illinois, August 30–September 4, 2015.
  • G. H. SEO, H. H. SON, and S. J. KIM, “Numerical Analysis of RBHT Reflood Experiments Using MARS 1D and 3D Modules,” J. Nucl. Sci. Technol., 52, 1, 70 (2015); https://doi.org/10.1080/00223131.2014.932722.
  • S. H. HONG et al., “Reflood Experiments at Elevated Pressures Using Intact and Deformed Rod Bundles to Simulate Small and Medium Break Loss-of-Coolant Accidents,” Nucl. Eng. Des., 338, 209 (2018); https://doi.org/10.1016/j.nucengdes.2018.08.017.
  • A. VASILIEV and J. STUCKERT, “Application of Thermal Hydraulic and Severe Accident Code SOCRAT/V3 to Bottom Water Reflood Experiment QUENCH-LOCA-1,” J. Nucl. Eng. Radiat. Sci., 2, 021024–1 (2016).
  • C. Y. PAIK et al., “Analysis of FLECHTSEASET 163-Rod Blocked Bundle Data Using COBRA-TF,” NUREG/CR-4166, U.S. Nuclear Regulatory Commission (1985).
  • D. R. TODD, C. FREPOLI, and L. E. HOCHREITER, “Development of a COBRA-TF Model for the Penn State University—Rod Bundle Heat Transfer Program,” Proc. 7th Int, Conf. Nuclear Engineering, Tokyo, Japan, April 19–23, 1999.
  • S. ERGUN, L. E. HOCHREITER, and J. H. MAHAFFY, “Modifications to COBRA-TF to Model Dispersed Flow Film Boiling with Two Flow, Four Field Eulerian–Eulerian Approach—Part 1,” Ann. Nucl. Energy, 35, 1663 (2008); https://doi.org/10.1016/j.anucene.2008.02.013.
  • S. ERGUN, L. E. HOCHREITER, and J. H. MAHAFFY, “Modifications to COBRA-TF to Model Dispersed Flow Film Boiling with Two Flow, Four Field Eulerian-Eulerian Approach—Part 2,” Ann. Nucl. Energy, 35, 1671 (2008); https://doi.org/10.1016/j.anucene.2008.02.014.
  • M. J. HOLOWACH et al., “A Model for Predicting Droplet Entrainment at a Quench Front in Thermal Hydraulic Analysis Codes,” Proc. IMECE’03, Washington, District of Columbia, November 16–21, 2003.
  • Y. JIN et al., “Numerical Investigation of Rod Bundle Thermal-Hydraulic Behaviour During Reflood Transients Using COBRA-TF,” Ann. Nucl. Energy, 148, 107708 (Dec. 1, 2020); https://doi.org/10.1016/j.anucene.2020.107708.
  • Y. JIN et al., “Validation of the Sub-channel Analysis Code COBRA-TF Based on the NRC/PSU RBHT Benchmark Data,” Proc. 19th Int. Topl. Mtg. Nuclear Reactor Thermal Hydraulics (NURETH-19), Brussels, Belgium, March 6, 2022.
  • T. M. MITCHELL, Machine Learning, McGraw-Hill, New York (1997).
  • M. GOMEZ et al., “Nuclear Energy System’s Behaviour and Decision Making Using Machine Learning,” Nucl. Eng. Des., 324, 27 (2017); https://doi.org/10.1016/j.nucengdes.2017.08.020.
  • H. KIM et al., “Prediction of Critical Heat Flux for Narrow Rectangular Channels in a Steady State Condition Using Machine Learning,” Nucl. Eng. Technol., 53, 6, 1796 (2021); https://doi.org/10.1016/j.net.2020.12.007.
  • Y. JIN, X. G. ZHAO, and K. SHIRVAN, “Unified Domain Knowledge Informed Machine Learning Model for CHF Prediction,” presented at the 2021 America Nuclear Society Virtual Annual Mtg., June 14, 2021.
  • Y. JIN et al., “Constructing a New CHF Look-Up Table Based on the Domain Knowledge Informed Machine Learning Methodology,” Proc. 19th Int. Topl. Mtg. Nuclear Reactor Thermal Hydraulics (NURETH-19), Brussels, Belgium, March 6, 2022.
  • X. ZHAO et al., “On the Prediction of Critical Heat Flux Using a Physics-Informed Machine Learning Aided Framework,” Appl. Therm. Eng., 164, 114540 (2020); https://doi.org/10.1016/j.applthermaleng.2019.114540.
  • H. M. PARK, J. H. LEE, and K. D. KIM, “Wall Temperature Prediction at Critical Heat Flux Using a Machine Learning Model,” Ann. Nucl. Energy, 141, 107334 (2020); https://doi.org/10.1016/j.anucene.2020.107334.
  • M. F. HE and Y. LEE, “Application of Machine Learning for Prediction of Critical Heat Flux: Support Vector Machine for Data-Driven CHF Look-Up Table Construction Based on Sparingly Distributed Training Data Points,” Nucl. Eng. Des., 338, 189 (2018); https://doi.org/10.1016/j.nucengdes.2018.08.005.
  • “Transient and Accident Analysis Methods,” Regulatory Guide 1.203, U.S. Nuclear Regulatory Commission (2005).
  • “UMS: Report on the Uncertainty Methods Study,” Vols. 1 and 2, NEA/CSNI/R (1997), p. 35, Nuclear Energy Agency, Committee of the Safety of Nuclear Installations (1998).
  • “BEMUSE Phase VI Report—Status Report on the Area, Classification of the Methods, Conclusions and Recommendations,” NEA/CSNI/R, p. 4, Nuclear Energy Agency, Committee of the Safety of Nuclear Installations (2011).
  • “PREMIUM: A Benchmark on the Quantification of the Uncertainty of the Physical Models in the System Thermal-Hydraulic Codes—Methodologies and Data Review,” NEA/ CSNI/R, p. 9, Nuclear Energy Agency, Committee of the Safety of Nuclear Installations (2016).
  • B. BOYACK et al., “Quantifying Reactor Safety Margins,” NUREG/CR-5249, R4, U.S. Nuclear Regulatory Commission (1989).
  • H. GLAESER, “Uncertainty and Sensitivity Analysis of a Post-Experiment Calculation in Thermal Hydraulics,” RESS, 45, 1–2, 19 (1994).
  • F. D’AURIA, N. DEBRECIN, and G. M. GALASSI, “Outline of the Uncertainty Methodology Based on Accuracy Extrapolation,” Nucl. Technol., 109, 21 (1995); https://doi.org/10.13182/NT109-21.
  • X. WU et al., “Inverse Uncertainty Quantification Using the Modular Bayesian Approach Based on Gaussian Process, Part 2: Application to TRACE,” Nucl. Eng. Des., 335, 417 (2018).
  • Y. LIU and N. DINH, “Validation and Uncertainty Quantification for Wall Boiling Closure Relations in Multiphase-CFD Solver,” Nucl. Sci. Eng., 193, 81 (2019); https://doi.org/10.1080/00295639.2018.1512790.
  • R. COCCI et al., “A Comprehensive Bayesian Framework for the Development, Validation and Uncertainty Quantification of Thermal-Hydraulic Models,” Ann. Nucl. Energy, 172, 109029 (2022); https://doi.org/10.1016/j.anucene.2022.109029.
  • S. KIM et al., “Final Report on Advanced Instrumentation Development,” NUREG/CR Report, U.S. Nuclear Regulatory Commission (2018).
  • Y. JIN et al., “Investigation of the Thermal-Hydraulic Non-equilibrium in a 7×7 Rod Bundle During Reflood,” Int. J. Heat Mass Transfer, 127, 266 (2018); https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.011.
  • Y. JIN et al., “Uncertainty Analysis on Droplet Size Measurement in Dispersed Flow Film Boiling Regime During Reflood Using Image Processing Technique,” Nucl. Eng. Des., 326, 202 (2018); https://doi.org/10.1016/j.nucengdes.2017.11.013.
  • Y. JIN et al., “Experimental Study of Droplet Sizes Across a Spacer Grid Location Under Various Reflood Conditions,” Exp. Therm. Fluid Sci., 94, 246 (2018); https://doi.org/10.1016/j.expthermflusci.2018.02.017.
  • Y. JIN et al., “Investigation of Two-Phase Flow Thermal-Hydraulic Behavior in Rod Bundle During Reflood Transients Based on the RBHT Experimental Data,” PhD Thesis, Pennsylvania State University, University Park, Department of Mechanical and Nuclear Engineering (2019).
  • T. FOSHCH et al., “Regression Models of the Nuclear Power Unit VVER-1000 Using Data Mining Techniques,” Procedia Comput. Sci., 100, 253 (2016); https://doi.org/10.1016/j.procs.2016.09.151.
  • L. FAHRMEIR et al., Regression Models, Springer, Berlin, Heidelberg (2013); https://doi.org/10.1007/978-3-642-34333-9_2.
  • S. R. PATRA et al., “Artificial Neural Network Model for Intermediate Heat Exchanger of Nuclear Reactor,” Int. J. Comput. Appl., 1, 26, 36 (2010).
  • D. MALJOVEC et al., “Analyzing Simulation-based PRA Data through Traditional and Topological Clustering: A BWR Station Blackout Case Study,” Reliab. Eng. Syst. Saf., 145, 262 (2016); https://doi.org/10.1016/j.ress.2015.07.001.
  • O. I. ABIODUN et al., “State-of-the-Art in Artificial Neural Network Applications: A Survey,” Heliyon, 4, e00938 (2018); https://doi.org/10.1016/j.heliyon.2018.
  • H. H. KANG, M. KAYA, and S. HAJIMIRZA, “A Data Driven Artificial Neural Network Model for Predicting Radiative Properties of Metallic Packed Beds,” Quant. Spectrosc. Radiat. Transfer, 226, 66 (2019); https://doi.org/10.1016/j.jqsrt.2019.01.013.
  • J. LI, “Brief Introduction of Back Propagation (BP) Neural Network Algorithm and Its Improvement,” Adv. Comput. Sci. Inf. Eng., 169, (2012); https://doi.org/10.1007/978-3-642-30223-7_87.
  • K. O’SHEA and R. NASH, “An Introduction to Convolutional Neural Networks,” Cornell Univrsity (2015); https://arxiv.org/abs/1511.08458.
  • T. MIKOLOV et al., Recurrent Neural Network Based Language Model, Interspeech (2010).
  • Y. SINGH and A. S. CHAUHAN, “Neural Networks in Data Mining,” J. Theor. Appl. Inf. Technol., 5, 36e42 (2009).
  • N. SRIVASTAVA et al., “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” J. Mach. Learn. Res., 15, 1929 (2014).
  • L. PRECHELT, “Automatic Early Stopping Using Cross Validation: Quantifying the Criteria,” Neural Networks, 11, 761 (1998); https://doi.org/10.1016/S0893-6080(98)00010-0.
  • T. K. HO, “Random Decision Forests,” Proc. 3rd Int. Conf. Doc. Anal. Recognit., 1, 278 (1995); https://doi.org/10.1109/ICDAR.1995.598994.
  • W. JAEGERET et al., “Uncertainty and Sensitivity Studies with TRACE-SUSA and TRACE-DAKOTA by Means of Steady State BFBT Data,” Sci. Technol. Nucl. Inst., Article ID 610598, 11 (2013).
  • R. P. MARTIN and L. D. O’DELL, “Development Considerations of AREVA NP Inc.’s Realistic LBLOCA Analysis Methodology,” Sci. Technol. Nucl. Inst., Article ID 239718, 13 (2008); https://doi.org/10.1155/2008/239718.
  • C. FREPOLI, “An Overview of Westinghouse Realistic Large Break LOCA Evaluation Model,” Sci. Technol. Nucl. Ins., Article ID 498737, 15 (2008); https://doi.org/10.1155/2008/498737.
  • E. ZUGAZAGOITIA, “Uncertainty and Sensitivity Analysis of a PWR LOCA Sequence Using Parametric and Non-parametric Methods,” Reliab. Eng. Syst. Saf., 193, 106607 (2020); https://doi.org/10.1016/j.ress.2019.106607.
  • B. M. ADAMS et al., Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.11 User’s Manual, Sandia National Laboratories (2019).
  • “UK ABWR Generic Pre-construction Safety Report (PCSR),” Technical Report. (Rev. B.), HITACHI-GE (2015).