965
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

Informing Performance Metrics of Advanced I&C Systems for Liquid Fueled Fast Molten Salt Reactors

ORCID Icon, ORCID Icon &
Pages 868-885 | Received 25 Feb 2022, Accepted 06 Jul 2022, Published online: 05 Aug 2022

References

  • “MCFR TerraPower,” TerraPower; http://terrapower.com/technologies/mcfr (current as of Feb. 25, 2022).
  • “Moltex Energy,” SSR TECHNOLOGY; https://www.moltexenergy.com/technology-suite (current as of Feb. 25, 2022).
  • D. E. HOLCOMB, R. A. KISNER, and S. M. CEITNER, “Instrumentation Framework for Molten Salt Reactors,” ORNL/TM-2018/868, Oak Ridge National Laboratory (June 2018).
  • P. F. PETERSON et al., “Integral and Separate Effects Tests for Thermal Hydraulics Code Validation for Liquid-Salt Cooled Nuclear Reactors,” Compact Integral Effects Test (CIET) Final Report, Project Number 09-789 (October 2012).
  • A. CAMMI et al., “A Multi-Physics Modelling Approach to the Dynamics of Molten Salt Reactors,” Ann. Nucl. Energy, 38, 6, 1356 (2011); https://doi.org/10.1016/j.anucene.2011.01.037.
  • H. ROUCH et al., “Preliminary Thermal-Hydraulic Core Design of the Molten Salt Fast Reactor (MSFR),” Ann. Nucl. Energy, 64, 449 (2014); https://doi.org/10.1016/j.anucene.2013.09.012.
  • B. FENG et al., “Multiphysics Modeling of Precursors in Molten Salt Fast Reactors Using Proteus and Nek5000,” Proc. PHYSOR2020, Cambridge, United Kingdom, March 28–April 2, 2020, EPJ Web of Conference (2020).
  • M. RAMZY ALTAHHAN et al., “Preliminary Design and Analysis of Liquid Fuel Molten Salt Reactor Using Multi-Physics Code GeN-Foam,” Nucl. Eng. Des., 369, 110826 (2020); https://doi.org/10.1016/j.nucengdes.2020.110826.
  • Y. JEONG and K. SHIRVAN, “Multiphysics Modeling of Fast Liquid-Fuel Molten Salt Reactor Using STAR-CCM+,” Proc. M&C 2021, October 3–7, 2021, American Nuclear Society ( 2021).
  • M. AUFIERO et al., “Development of an OpenFOAM Model for the Molten Salt Fast Reactor Transient Analysis,” Chem. Eng. Sci., 111, 390 (2014); https://doi.org/10.1016/j.ces.2014.03.003.
  • A. LINDSAY et al., “Introduction to Moltres: An Application for Simulation of Molten Salt Reactors,” Ann. Nucl. Energy, 114, 530 (2018); https://doi.org/10.1016/j.anucene.2017.12.025.
  • F. CARUGGI et al., “Multiphysics Modelling of Gaseous Fission Products in the Molten Salt Fast Reactor,” Nucl. Eng. Des., 392, 111762 (2022); https://doi.org/10.1016/j.nucengdes.2022.111762.
  • A. DI RONCO et al., “Multiphysics Analysis of RANS-Based Turbulent Transport of Solid Fission Products in the Molten Salt Fast Reactor,” Nucl. Eng. Des., 391, 111739 (2022); https://doi.org/10.1016/j.nucengdes.2022.111739.
  • G. YANG et al., “Development of Coupled PROTEUS-NODAL and SAM Code System for Multiphysics Analysis of Molten Salt Reactors,” Ann. Nucl. Energy, 168, 108889 (2022); https://doi.org/10.1016/j.anucene.2021.108889.
  • J. GROTH-JENSEN et al., “Verification of Multiphysics Coupling Techniques for Modelling of Molten Salt Reactors,” Ann. Nucl. Energy, 164, 108578 (2021); https://doi.org/10.1016/j.anucene.2021.108578.
  • A. LAUREAU et al., “Transient Coupled Calculations of the Molten Salt Fast Reactor Using the Transient Fission Matrix Approach,” Nucl. Eng. Des., 316, 112 (2017); https://doi.org/10.1016/j.nucengdes.2017.02.022.
  • M. TIBERGA, “Development of a High-Fidelity Multi-Physics Simulation Tool for Liquid-Fuel Fast Nuclear Reactors,” PhD Thesis, TU Delft University, Energy and Nuclear Engineering (2020).
  • H. LIAOYUAN et al., “Th-U Breeding Performances in an Optimized Molten Chloride Salt Fast Reactor,” Nucl. Sci. Eng., 195, 2, 185 (2020); https://doi.org/10.1080/00295639.2020.1798728.
  • R. T. COYLE, T. M. THOMAS, and G. Y. LAI, “Exploratory Corrosion Tests on Alloys in Molten Salts at 900°C,” J. Mater. Energy Syst., 7, 4, 345 (1986); https://doi.org/10.1007/BF02833573.
  • W. DING, A. BONK, and T. BAUER, “Corrosion Behavior of Metallic Alloys in Molten Chloride Salts for Thermal Energy Storage in Concentrated Solar Power Plants: A Review,” Front. Chem. Sci. Eng., 12, 3, 564 (2018); https://doi.org/10.1007/s11705-018-1720-0.
  • A. CAMMI et al., “Dimensional Effects in the Modelling of MSR Dynamics: Moving on from Simplified Schemes of Analysis to a Multi-Physics Modelling Approach,” Nucl. Eng. Des., 246, 12 (2012); https://doi.org/10.1016/j.nucengdes.2011.08.002.
  • M. S. GREENWOOD and B. BETZLER, “Modified Point-Kinetics Model for Neutron Precursors and Fission Product Behavior for Fluid-Fueled Molten Salt Reactors,” Nucl. Sci. Eng., 193, 4, 417 (2019); https://doi.org/10.1080/00295639.2018.1531619.
  • STAR-CCM+ 13.06 Software Manual, Siemens (2018).
  • M. TIBERGA et al., “Results from a Multi-Physics Numerical Benchmark for Codes Dedicated to Molten Salt Fast Reactors,” Ann. Nucl. Energy, 142, 107428 (2020); https://doi.org/10.1016/j.anucene.2020.107428.
  • D. WOOTEN and J. J. POWERS, “A Review of Molten Salt Reactor Kinetics Models,” Nucl. Sci. Eng., 191, 3, 203 (2018); https://doi.org/10.1080/00295639.2018.1480182.
  • V. N. DESYATNIK et al., “Density, Surface Tension, and Viscosity of Uranium Trichloride-Sodium Chloride Melts,” At. Energiya, 39, 1, 70 (1975).
  • S. KATYSHEV and L. TESLYUK, “Ionic Melts in Nuclear Power,” in Challenges and Solutions in the Russian Energy Sector, pp. 181–189, Springer (2018).
  • M. TAUBE and J. LIGOU, “Molten Plutonium Chlorides Fast Breeder Reactor Cooled by Molten Uranium Chloride,” Ann. Nucl. Sci. Eng., 1, 277 (1974); https://doi.org/10.1016/0302-2927(74)90045-2.
  • “Serpent—A Monte Carlo Reactor Physics Burnup Calculation Code”; http://montecarlo.vtt.fi/ (current as of Feb. 10, 2021).
  • C. COYLE, E. BAGLIETTO, and C. FORSBERG, “Advancing Radiative Heat Transfer Modeling in High-Temperature Liquid Salts,” Nucl. Sci. Eng., 194, 8–9, 782 (2020); https://doi.org/10.1080/00295639.2020.1723993.
  • J. C. GOMEZ-VIDAL and R. TIRAWAT, “Corrosion of Alloys in a Chloride Molten Salt (NaCl-LiCl) for Solar Thermal Technologies,” Solar Energy Mater. Sol. Cells, 157, 234 (2016); https://doi.org/10.1016/j.solmat.2016.05.052.
  • P. LU et al., “Distributed Optical Fiber Sensing: Review and Perspective,” Appl. Phys. Rev., 6, 041302 (2019); https://doi.org/10.1063/1.5113955.
  • M. BURIC et al., “Modified Single Crystal Fibers for Distributed Sensing Applications,” Proc. SPIE 10208, Fiber Optic Sensors and Applications XIV, p. 102080C (Apr. 27, 2017); https://doi.org/10.1117/12.2262992.
  • B. LIU et al., “Design and Implementation of Distributed Ultra-High Temperature Sensing System with a Single Crystal Fiber,” J. Light. Technol., 36, 23, 5511 (2018); https://doi.org/10.1109/JLT.2018.2874395.