100
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

Improvements in Antineutrino Spectrum by Including Fission Product Corrections and Calculation of Scatter-Based Pulse Height Distributions

ORCID Icon, & ORCID Icon
Pages 443-462 | Received 23 Feb 2022, Accepted 15 Jul 2022, Published online: 28 Sep 2022

References

  • D. AKIMOV et al., “Observation of Coherent Elastic Neutrino-Nucleus Scattering,” Science, 357, 1123 (2017); https://doi.org/10.1126/science.aao0990.
  • M. BOWEN and P. HUBER, “Reactor Neutrino Applications and Coherent Elastic Neutrino Nucleus Scattering,” Phys. Rev. D, 102, 53008 (2020); https://doi.org/10.1103/PhysRevD.102.053008.
  • W. E. ANG, S. LEE, and S. PRASAD, “Improvements in Antineutrino Detector Response by Including Fission Product Transitions,” Trans. Am. Nucl. Soc., 125, 340 (2021); https://doi.org/10.13182/T125-36926.
  • W. E. ANG, S. PRASAD, and R. MAHAPATRA, “Coherent Elastic Neutrino Nucleus Scatter Response of Semiconductor Detectors to Nuclear Reactor Antineutrinos,” Nucl. Instrum. Methods Phys. Res. Sect. A, 1004, 165342 (2021); https://doi.org/10.1016/j.nima.2021.165342.
  • H. NEOG et al., “Phonon-Mediated High-Voltage Detector with Background Rejection for Low-Mass Dark Matter and Reactor Coherent Neutrino Scattering Experiments,” ArXiv:2006.13139 [Hep-Ex, Physics:Physics] (2020).
  • C. STEWART and A. ERICKSON, “Antineutrino Analysis for Continuous Monitoring of Nuclear Reactors: Sensitivity Study,” J. Appl. Phys., 118, 164902 (2015); https://doi.org/10.1063/1.4934638.
  • G. F. KNOLL, Radiation Detection and Measurement, 4th ed., Wiley (2010).
  • A. C. HAYES and P. VOGEL, “Reactor Neutrino Spectra,” Annu. Rev. Nucl. Part. Sci., 66, 219 (2016); https://doi.org/10.1146/annurev-nucl-102115-044826.
  • K. SCHRECKENBACH et al., “Determination of the Antineutrino Spectrum from 235U Thermal Neutron Fission Products up to 9.5 MeV,” Phys. Lett. B, 160, 325 (1985); https://doi.org/10.1016/0370-2693(85)91337-1.
  • T. A. MUELLER et al., “Improved Predictions of Reactor Antineutrino Spectra,” Phys. Rev. C, 83, 54615 (2011); https://doi.org/10.1103/PhysRevC.83.054615.
  • P. HUBER, “On the Determination of Anti-neutrino Spectra from Nuclear Reactors,” Phys. Rev. C, 84, 24617 (2011); https://doi.org/10.1103/PhysRevC.84.024617.
  • N. HAAG et al., “Experimental Determination of the Antineutrino Spectrum of the Fission Products of 238U,” Phys. Rev. Lett, 112, 122501 (2014); https://doi.org/10.1103/PhysRevLett.112.122501.
  • P. NOVELLA, “The Antineutrino Energy Structure in Reactor Experiments,” Adv. High Energy Phys., 2015, e364392 (2015); https://doi.org/10.1155/2015/364392.
  • A. ALGORA et al., “Beta-Decay Studies for Applied and Basic Nuclear Physics,” Eur. Phys. J. A, 57, 85 (2021); https://doi.org/10.1140/epja/s10050-020-00316-4.
  • P. VOGEL et al., “Reactor Antineutrino Spectra and Their Application to Antineutrino-Induced Reactions. II,” Phys. Rev. C, 24, 1543 (1981); https://doi.org/10.1103/PhysRevC.24.1543.
  • S. RICE et al., “Decay Heat Measurements Using Total Absorption Gamma-Ray Spectroscopy,” J. Phys., 381, 12056 (2012).
  • M. FALLOT et al., “Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra,” EPJ Web Conf., 146, 10002 (2017); https://doi.org/10.1051/epjconf/201714610002.
  • J. C. HARDY et al., “The Essential Decay of Pandemonium: A Demonstration of Errors in Complex Beta-Decay Schemes,” Phys. Lett. B, 71, 307 (1977); https://doi.org/10.1016/0370-2693(77)90223-4.
  • M. ESTIENNE et al., “Summation Calculations for Reactor Antineutrino Spectra, Decay Heat and Delayed Neutron Fractions Involving New TAGS Data and Evaluated Databases,” EPJ Web Conf., 211, 1001 (2019); https://doi.org/10.1051/epjconf/201921101001.
  • “ENDF/B-VIII.0 Evaluated Nuclear Data Library,” National Nuclear Data Center, Brookhaven National Laboratory; spectra (current as of Feb. 23, 2022).
  • “JENDL/DDF-2015,” Nuclear Data Center, Japan Atomic Energy Agency; https://wwwndc.jaea.go.jp/ftpnd/jendl/jendl-ddf-2015.html (current as of Feb. 23, 2022).
  • “JEFF 3.3,” Organisation for Economic Co-operation and Development/Nuclear Energy Agency; https://www.oecd-nea.org/dbdata/jeff/jeff33/index.html (current as of Feb. 23, 2022).
  • “Evaluated and Compiled Nuclear Structure Data,” National Nuclear Data Center, Brookhaven National Laboratory; https://www.nndc.bnl.gov/ensdf/ (current as of Feb. 23, 2022).
  • T. KAWANO, P. MÖLLER, and W. B. WILSON, “Calculation of Delayed-Neutron Energy Spectra in a Quasiparticle Random-Phase Approximation–Hauser-Feshbach Model,” Phys. Rev. C, 78, 54601 (2008); https://doi.org/10.1103/PhysRevC.78.054601.
  • K. TAKAHASHI and M. YAMADA, “Gross Theory of Nuclear β-Decay,” Prog. Theor. Phys., 41, 1470 (1969); https://doi.org/10.1143/PTP.41.1470.
  • H. KOURA et al., “Improvement of Gross Theory of Beta-Decay for Application to Nuclear Data,” EPJ Web Conf., 146, 12003 (2017); https://doi.org/10.1051/epjconf/201714612003.
  • V. I. KOPEIKIN, “Flux and Spectrum of Reactor Antineutrinos,” Phys. Atom. Nucl., 75, 143 (2012); https://doi.org/10.1134/S1063778812020123.
  • R. C. GREENWOOD, M. H. PUTNAM, and K. D. WATTS, “Ground-State β −-Branching Intensities of Several Fission-Product Isotopes Measured Using a Total Absorption γ-Ray Spectrometer,” Nucl. Instrum. Methods Phys. Res. Sect. A, 378, 312 (1996); https://doi.org/10.1016/0168-9002(96)00209-4.
  • A. ALGORA et al., “Reactor Decay Heat in 239Pu: Solving the γ Discrepancy in the 4–3000-s Cooling Period,” Phys. Rev. Lett, 105, 202501 (2010); https://doi.org/10.1103/PhysRevLett.105.202501.
  • -A.-A. ZAKARI-ISSOUFOU et al., “Total Absorption Spectroscopy Study of 92Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape,” Phys. Rev. Lett., 115, 102503 (2015); https://doi.org/10.1103/PhysRevLett.115.102503.
  • S. RICE et al., “Total Absorption Spectroscopy Study of the β Decay of 86Br and 91Rb,” Phys. Rev. C, 96, 014320 (2017); https://doi.org/10.1103/PhysRevC.96.014320.
  • L. M. LOIC, PhD Thesis, L’Universite de Nantes (2018).
  • V. GUADILLA et al., “TAGS Measurements of 100Nb Ground and Isomeric States and 140Cs for Neutrino Physics with the New DTAS Detector,” EPJ Web Conf., 146, 10010 (2017); https://doi.org/10.1051/epjconf/201714610010.
  • J. GOMBAS et al., “β-Decay Feeding Intensity Distributions for 103,104mNb,” Phys. Rev. C, 103, 35803 (2021); https://doi.org/10.1103/PhysRevC.103.035803.
  • B. DUTTA et al., “Sensitivity to Z-Prime and Non-Standard Neutrino Interactions from Ultra-Low Threshold Neutrino-Nucleus Coherent Scattering,” Phys. Rev. D, 93, 13015 (2016); https://doi.org/10.1103/PhysRevD.93.013015.
  • A. C. HAYES et al., “Systematic Uncertainties in the Analysis of the Reactor Neutrino Anomaly,” Phys. Rev. Lett., 112, 202501 (2014); https://doi.org/10.1103/PhysRevLett.112.202501.
  • V. B. BERESTETSKII, E. M. LIFSHITZ, and L. P. PITAEVSKII, “Chapter XII—Radiative Corrections,” in Quantum Electrodynamics, 2nd ed., pp. 501–596, Butterworth-Heinemann, Oxford (1982).
  • A. SIRLIN, “Radiative Correction to the ν‾E (νE) Spectrum in β Decay,” Phys. Rev. D, 84, 14021 (2011); https://doi.org/10.1103/PhysRevD.84.014021.
  • J. ERLER and S. SU, “The Weak Neutral Current,” Prog. Part Nucl. Phys., 71, 119 (2013); https://doi.org/10.1016/j.ppnp.2013.03.004.
  • P. COLOMA et al., “Determining the Nuclear Neutron Distribution from Coherent Elastic Neutrino-Nucleus Scattering: Current Results and Future Prospects,” J. High Energy Phys., 2020, 30 (2020); https://doi.org/10.1007/JHEP08(2020)030.
  • K. SCHOLBERG, “Observation of COHERENT Elastic Neutrino-Nucleus Scattering by COHERENT,” ArXiv:1801.05546 [Astro-Ph, Physics:Hep-Ex, Physics:Hep-Ph, Physics:Nucl-Ex, Physics:Physics] (2018).
  • D. A. SIERRA, V. DE ROMERI, and N. ROJAS, “COHERENT Analysis of Neutrino Generalized Interactions,” Phys. Rev. D, 98, 075018 (2018); https://doi.org/10.1103/PhysRevD.98.075018.
  • “Tables of Nuclear Data,” Nuclear Data Center, Japan Atomic Energy Agency; https://wwwndc.jaea.go.jp/NuC/ (current as of Feb. 23, 2022).
  • S. ISHIMOTO et al., “Simple Calculation of Reactor Antineutrino Energy Spectrum by the Use of Nuclear Data Libraries,” J. Nucl. Sci. Technol., 39, 670 (2002); https://doi.org/10.1080/18811248.2002.9715248.
  • W. E. ANG, S. PRASAD, and S. CHIRAYATH, “Antineutrino Detection for Temporal Monitoring of Fuel Burnup in a Large Nuclear Reactor,” Nucl. Instrum. Methods Phys. Res. A, 1028, 166353 (2022); https://doi.org/10.1016/j.nima.2022.166353.
  • W. E. ANG, S. LEE, and S. PRASAD, “Improvements in Antineutrino Detector Response by Including Fission Product Isomeric Transitions and Corrections Using New Data,” ArXiv (2021); https://arxiv.org/abs/2112.12250 ( current as of Feb. 23, 2022).
  • W. E. ANG, “NeutronNeutrinoSensing/Antineutrinos” (2022); https://github.com/NeutronNeutrinoSensing/Antineutrinos (current as of May 2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.