783
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

Simulation of the Melting Behavior of the UO2-Zircaloy Fuel Cladding System by Laser Heating

, ORCID Icon, , , &
Pages 351-363 | Received 03 Jan 2022, Accepted 22 Jul 2022, Published online: 07 Sep 2022

References

  • Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty,” V. MASSON-DELMOTTE et al., Eds., Intergovernmental Panel on Climate Change (2018).
  • “ Taxonomy: MEPs Object to Commission’s Plan to Include Gas and Nuclear Activities”; https://www.europarl.europa.eu/news/en/press-room/20220613IPR32812/taxonomy-meps-object-to-commission-s-plan-to-include-gas-and-nuclear-activities (current as of Jan. 3, 2022).
  • Nuclear Power Reactor Core Melt Accidents: Current State of Knowledge, D. JACQUEMAIN et al., Eds., Institut de Radioprotection et de Sûreté Nucléaire (2015); https://www.irsn.fr/EN/Research/publications-documentation/Scientific-books/ (current as of Jan. 3, 2022).
  • R. R. HOBBINS et al., “Molten Material Behavior in the Three Mile Island Unit 2 Accident,” Nucl. Technol., 87, 1005 (1989); https://doi.org/10.13182/NT89-A27692.
  • P. HOFMANN, “Current Knowledge on Core Degradation Phenomena, A Review,” J. Nucl. Mater., 270, 194 (1999); https://doi.org/10.1016/S0022-3115(98)00899-X.
  • P. HOFMANN and C. POLITIS, “The Kinetics of the Uranium Dioxide—Zircaloy Reactions at High Temperatures,” J. Nucl. Mater, 87, 375 (1979); https://doi.org/10.1016/0022-3115(79)90575-0.
  • A. QUAINI et al., “Contribution to the Thermodynamic Description of the Corium—The U-Zr-O System,” J. Nucl. Mater., 501, 104 (2018); https://doi.org/10.1016/j.jnucmat.2018.01.023.
  • B. ADROGUER et al., “Core Loss During a Severe Accident (COLOSS),” Nucl. Eng. Des., 235, 173 (2005); https://doi.org/10.1016/j.nucengdes.2004.08.050.
  • J. O. HENRIE, “The Effects of Hydrogen Generation on Radioactive Waste Handling Technology,” Nucl. Technol., 87, 729 (1989); https://doi.org/10.13182/NT89-A27665.
  • D. O. NORTHWOOD and U. KOSASIH, “Hydrides and Delayed Hydrogen Cracking in Zirconium and Its Alloys,” Int. Metals Rev., 28, 92 (1983); https://doi.org/10.1179/imtr.1983.28.1.92.
  • “Thermodynamic Characterisation of Fuel Debris and Fission Products Based on Scenario Analysis of Severe Accident Progression at Fukushima-Daiichi Nuclear Power Station (TCOFF),” Organisation for Economic Co-operation and Development, Nuclear Energy Agency (2021); https://www.oecd-nea.org/science/tcoff/ (current as of Jan. 3, 2022).
  • D. MANARA et al., “New Techniques for High-Temperature Melting Measurements in Volatile Refractory Materials via Laser Surface Heating,” Rev. Sci. Instrum., 79, 113901 (2008); https://doi.org/10.1063/1.3005994.
  • D. MANARA et al., “Laser-Heating and Radiance Spectrometry for the Study of Nuclear Materials in Conditions Simulating a Nuclear Power Plant Accident,” J. Vis. Exp., 130, e54807 (2017); https://doi.org/10.3791/54807.
  • D. P. DEWITT and G. D. NUTTER, Theory and Practice of Radiation Thermometry, John Wiley & Sons (1988).
  • G. NEUER et al., “Critical Analysis of the Different Methods of Multiwavelength Pyrometry,” Temperature: Its Measurement and Control in Science and Industry, Vol. 6, No. 1, p. 787, J. F. SCHOOLEY, Eds., American Institute of Physics, New York (1992).
  • A. QUAINI et al., “Laser Heating Investigation of the High-Temperature Interaction Between Zirconium and UO2,” J. Nucl. Mater., 509, 517 (2018); https://doi.org/10.1016/j.jnucmat.2018.07.021.
  • A. CEZAIRLIYAN, J. L. MCCLURE, and A. P. MILLER, “Radiance Temperatures (in the Wavelength Range 523–907 nm) of Group IVB Transition Metals Titanium, Zirconium, and Hafnium at their Melting Points by a Pulse-Heating Technique,” Int. J. Thermophys., 15, 993 (1994); https://doi.org/10.1007/BF01447109.
  • S. MASTROMARINO et al., “Assessment of Solid/Liquid Equilibria in the (U, Zr)O2+y System,” J. Nucl. Mater., 494, 368 (2017); https://doi.org/10.1016/j.jnucmat.2017.07.045.
  • T. G. THEOFANOUS et al., “In-Vessel Coolability and Retention of a Core Melt,” Nucl. Eng. Des., 169, 1 (1997); https://doi.org/10.1016/S0029-5493(97)00009-5.
  • J. M. SEILER et al., “Consequences of Material Effects on In-Vessel Retention,” Nucl. Eng. Des., 237, 1752 (2007); https://doi.org/10.1016/J.NUCENGDES.2007.03.007.
  • J. P. VAN DORSSELAERE et al., “The ASTEC Integral Code for Severe Accident Simulation,” Nucl. Technol., 165, 293 (2009); https://doi.org/10.13182/NT09-A4102.