924
Views
1
CrossRef citations to date
0
Altmetric
TECHNICAL PAPERS

Parametric Model-Order Reduction for Radiation Transport Simulations Based on an Affine Decomposition of the Operators

, & ORCID Icon
Pages 233-261 | Received 23 Feb 2022, Accepted 10 Aug 2022, Published online: 15 Dec 2022

References

  • M. P. ADAMS et al., “Provably Optimal Parallel Transport Sweeps on Semi-Structured Grids,” J. Comput. Phys., 407, 109234 (2020); https://doi.org/10.1016/j.jcp.2020.109234.
  • J. I. VERMAAK et al., “Massively Parallel Transport Sweeps on Meshes with Cyclic Dependencies,” J. Comput. Phys., 425, 109892 (2021); https://doi.org/10.1016/j.jcp.2020.109892.
  • M. HANUS and J. C. RAGUSA, “Thermal Upscattering Acceleration Schemes for Parallel Transport Sweeps,” Nucl. Sci. Eng., 194, 10, 873 (2020); https://doi.org/10.1080/00295639.2020.1767436.
  • J. S. HESTHAVEN, G. ROZZA, and B. STAMM, Certified Reduced Basis Methods for Parameterized Partial Differential Equations, Springer International Publishing (2016); https://doi.org/10.1007/978-3-319-22470-1.
  • Reduced Order Methods for Modeling and Computational Reduction, A. QUARTERONI and G. ROZZA Eds., Springer International Publishing (2014); https://doi.org/10.1007/978-3-319-02090-7.
  • Reduced Basis Methods for Partial Differential Equations, A. QUARTERONI, A. MANZONI, and F. NEGRI Eds., Springer International Publishing (2016); https://doi.org/10.1007/978-3-319-15430-2.
  • Model Reduction of Parameterized Systems, P. BENNER et al. Eds., Springer International Publishing (2017); https://doi.org/10.1007/978-3-319-58785-1.
  • J. J. DUDERSTADT and L. J. HAMILTON, Nuclear Reactor Analysis, John Wiley & Sons, Inc. (1976).
  • G. I. BELL and S. GLASSTONE, Nuclear Reactor Theory, Van Nostrand Reinhold Company (1970).
  • M. HADIGOL and A. DOOSTAN, “Least Squares Polynomial Chaos Expansion: A Review of Sampling Strategies,” Comput. Methods Appl. Mech. Eng., 332, 382 (2018); https://doi.org/10.1016/j.cma.2017.12.019.
  • M. M. R. WILLIAMS, “Polynomial Chaos Functions and Neutron Diffusion,” Nucl. Sci. Eng., 155, 1, 109 (2007); https://doi.org/10.13182/NSE05-73TN.
  • M. WILLIAMS, “Polynomial Chaos Functions and Stochastic Differential Equations,” Ann. Nucl. Energy, 33, 9, 774 (2006); https://doi.org/10.1016/j.anucene.2006.04.005.
  • M. EATON and M. WILLIAMS, “A Probabilistic Study of the Influence of Parameter Uncertainty on Solutions of the Neutron Transport Equation,” Prog. Nucl. Energy, 52, 6, 580 (2010); https://doi.org/10.1016/j.pnucene.2010.01.002.
  • L. GILLI et al., “Performing Uncertainty Analysis of a Nonlinear Point-Kinetics/Lumped Parameters Problem Using Polynomial Chaos Techniques,” Ann. Nucl. Energy, 40, 1, 35 (2012); https://doi.org/10.1016/j.anucene.2011.09.016.
  • L. GILLI et al., “Uncertainty Quantification for Criticality Problems Using Non-intrusive and Adaptive Polynomial Chaos Techniques,” Ann. Nucl. Energy, 56, 71 (2013); https://doi.org/10.1016/j.anucene.2013.01.009.
  • Z. M. PRINCE and J. C. RAGUSA, “Parametric Uncertainty Quantification Using Proper Generalized Decomposition Applied to Neutron Diffusion,” Int. J. Numer. Methods Eng., 119, 9, 899 (2019); https://doi.org/10.1002/nme.6077.
  • J. P. SENECAL and W. JI, “Characterization of the Proper Generalized Decomposition Method for Fixed-Source Diffusion Problems,” Ann. Nucl. Energy, 126, 68 (2019); https://doi.org/10.1016/j.anucene.2018.10.062.
  • S. GONZÁLEZ-PINTOR, D. GINESTAR, and G. VERDÚ, “Using Proper Generalized Decomposition to Compute the Dominant Mode of a Nuclear Reactor,” Math. Comput. Modell., 57, 7, 1807 (2013); https://doi.org/10.1016/j.mcm.2011.11.066.
  • A. L. ALBERTI and T. S. PALMER, “Reduced-Order Modeling of Nuclear Reactor Kinetics Using Proper Generalized Decomposition,” Nucl. Sci. Eng., 194, 10, 837 (2020); https://doi.org/10.1080/00295639.2020.1758482.
  • K. A. DOMINESEY and W. JI, “Reduced-Order Modeling of Neutron Transport Separated in Space and Angle via Proper Generalized Decomposition,” presented at the International Conference on Mathematics Computational Methods Applied to Nuclear Science and Engineering, August 25-29 (2019).
  • K. A. DOMINESEY and W. JI, “Reduced-Order Modeling of Neutron Transport Separated in Energy by Proper Generalized Decomposition with Applications to Nuclear Reactor Physics,” J. Comput. Phys., 449, 110744 (2022); https://doi.org/10.1016/j.jcp.2021.110744.
  • J. KOU, S. L. CLAINCHE, and W. ZHANG, “A Reduced-Order Model for Compressible Flows with Buffeting Condition Using Higher Order Dynamic Mode Decomposition with a Mode Selection Criterion,” Phys. Fluids, 30, 1, 016103 (2018); https://doi.org/10.1063/1.4999699.
  • H. LU and D. M. TARTAKOVSKY, “Lagrangian Dynamic Mode Decomposition for Construction of Reduced-Order Models of Advection-Dominated Phenomena,” J. Comput. Phys., 407, 109229 (2020); https://doi.org/10.1016/j.jcp.2020.109229.
  • D. A. BISTRIAN and I. M. NAVON, “Randomized Dynamic Mode Decomposition for Nonintrusive Reduced Order Modelling,” Int. J. Numer. Methods Eng., 112, 1, 3 (2017); https://doi.org/10.1002/nme.5499.
  • Z. K. HARDY, J. E. MOREL, and C. AHRENS, “Dynamic Mode Decomposition for Subcritical Metal Systems,” Nucl. Sci. Eng., 193, 11, 1173 (2019); https://doi.org/10.1080/00295639.2019.1609317.
  • R. G. MCCLARREN, “Calculating Time Eigenvalues of the Neutron Transport Equation with Dynamic Mode Decomposition,” Nucl. Sci. Eng., 193, 8, 854 (2019); https://doi.org/10.1080/00295639.2018.1565014.
  • T. SAYADI et al., “Parametrized Data-Driven Decomposition for Bifurcation Analysis, with Application to Thermo-Acoustically Unstable Systems,” Phys. Fluids, 27, 3, 037102 (2015); https://doi.org/10.1063/1.4913868.
  • Q. HUNH, M. TANO, and J. C. RAGUSA, “Parametric Dynamic Mode Decomposition for Reduced Order Modeling,” J. Comput. Phys. (2022, accepted for publication).
  • Z. BAI, “Krylov Subspace Techniques for Reduced-Order Modeling of Large-Scale Dynamical Systems,” Appl. Numer. Math., 43, 1, 9 (2002); https://doi.org/10.1016/S0168-9274(02)00116-2.
  • Y. YUE and K. MEERBERGEN, “Parametric Model Order Reduction of Damped Mechanical Systems via the Block Arnoldi Process,” Appl. Math. Lett., 26, 6, 643 (2013); https://doi.org/10.1016/j.aml.2013.01.006.
  • K. LEE and K. T. CARLBERG, “Model Reduction of Dynamical Systems on Nonlinear Manifolds Using Deep Convolutional Autoencoders,” J. Comput. Phys., 404, 108973 (2020); https://doi.org/10.1016/j.jcp.2019.108973.
  • B. A. KHUWAILEH and W. A. METWALLY, “Gaussian Processa Aproach for Dose Mapping in Radiation Fields,” Nucl. Eng. Technol., 52, 8, 1807 (2020); https://doi.org/10.1016/j.net.2020.01.013.
  • K. PEARSON, “On Lines and Planes of Closest Fit to Systems of Points in Space,” London, Edinburgh Dublin Philosophical Magazine J. Sci., 2, 11, 559 (1901); https://doi.org/10.1080/14786440109462720.
  • D. T. CROMMELIN and A. J. MAJDA, “Strategies for Model Reduction: Comparing Different Optimal Bases,” J. Atmos. Sci., 61, 17, 2206 (Sep. 1, 2004); https://journals.ametsoc.org/view/journals/atsc/61/17/1520-0469_2004_061_2206_sfmrcd_2.0.co_2.xml (current as of Feb. 23,2022).
  • I. T. JOLLIFFE and J. CADIMA, “Principal Component Analysis: A Review and Recent Developments,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 374, 2065, 20150202 (2016); https://doi.org/10.1098/rsta.2015.0202.
  • C. W. ROWLEY and J. E. MARSDEN, “Reconstruction Equations and the Karhunen–Lo`eve Expansion for Systems with Symmetry,” Physica D, 142, 1, 1 (2000); https://doi.org/10.1016/S0167-2789(00)00042-7.
  • P. V. BAYLY et al., “Predicting Patterns of Epicardial Potentials During Ventricular Fibrillation,” IEEE Trans. Biomed. Eng., 42, 9, 898 (1995); https://doi.org/10.1109/10.412656.
  • E. KRUEZER and O. KUST, “Analysis of Long Torsional Strings by Proper Orthogonal Decomposition,” Arch. Appl. Math., 67, 68 (1996); https://doi.org/10.1007/BF00787141.
  • M. AZEEZ and A. VAKAKIS, “Proper Orthogonal Decomposition (POD) of a Class of Vibroimpact Oscillations,” J. Sound Vib., 240, 5, 859 (2001); https://doi.org/10.1006/jsvi.2000.3264.
  • B. EPUREANU, K. HALL, and E. DOWELL, “Reduced-Order Models of Unsteady Viscous Flows in Turbomachinery Using Viscous-Inviscid Coupling,” J. Fluids Struct., 15, 2, 255 (2001); https://doi.org/10.1006/jfls.2000.0334.
  • M. RAJAEE, S. K. F. KARLSSON, and L. SIROVICH, “Low-Dimensional Description of Free-Shear-Flow Coherent Structures and Their Dynamical Behavior,” J. Fluid Mech., 258, 1 (1994); https://doi.org/10.1017/S0022112094003228.
  • J. BURKARDT, M. GUNZBURGER, and H.-C. LEE, “POD and CVT-based Reduced-Order Modeling of Navier–Stokes Flows,” Comput. Methods Appl. Mech. Eng., 196, 1, 337 (2006); https://doi.org/10.1016/j.cma.2006.04.004.
  • F. FANG et al., “A POD Reduced Order Unstructured Mesh Ocean Modelling Method for Moderate Reynolds Number Flows,” Ocean Modell., 28, 1, 127 (2009); https://doi.org/10.1016/j.ocemod.2008.12.006.
  • A. BAKHSHINEJAD et al., “Merging Computational Fluid Dynamics and 4D Flow MRI Using Proper Orthogonal Decomposition and Ridge Regression,” J. Biomech., 58, 162 (2017); https://doi.org/10.1016/j.jbiomech.2017.05.004.
  • K. K. NAGARAJAN et al., “Open-Loop Control of Cavity Noise Using Proper Orthogonal Decomposition Reduced-Order Model,” Comput. Fluids, 160, 1 (2018); https://doi.org/10.1016/j.compfluid.2017.10.019.
  • D. LI et al., “An Efficient Implementation of Aeroelastic Tailoring Based on Efficient Computational Fluid Dynamics-based Reduced Order Model,” J. Fluids Struct., 84, 182 (2019); https://doi.org/10.1016/j.jfluidstructs.2018.10.011.
  • T. BUI-THANH et al., “Goal-Oriented, Model-Constrained Optimization for Reduction of Large-Scale Systems,” J. Comput. Phys., 224, 2, 880 (2007); https://doi.org/10.1016/j.jcp.2006.10.026.
  • P. GERMAN and J. C. RAGUSA, “Reduced-Order Modeling of Parameterized Multi-Group Diffusion k-Eigenvalue Problems,” Ann. Nucl. Energy, 134, 144 (2019); https://doi.org/10.1016/j.anucene.2019.05.049.
  • A. G. BUCHAN et al., “A POD Reduced-Order Model for Eigenvalue Problems with Application to Reactor Physics,” Int. J. Numer. Methods Eng., 95, 12, 1011 (2013); https://doi.org/10.1002/nme.4533.
  • A. BUCHAN et al., “A POD Reduced Order Model for Resolving Angular Direction in Neutron/Photon Transport Problems,” J. Comput. Phys., 296, 138 (2015); https://doi.org/10.1016/j.jcp.2015.04.043.
  • A. C. HUGHES and A. G. BUCHAN, “A Discontinuous and Adaptive Reduced Order Model for the Angular Discretization of the Boltzmann Transport Equation,” Int. J. Numer. Methods Eng., 121, 24, 5647 (2020); https://doi.org/10.1002/nme.6516.
  • J. TENCER et al., “Reduced Order Modeling Applied to the Discrete Ordinates Method for Radiation Heat Transfer in Participating Media,” Proc. Heat Transfer Summer Conf. (Nov. 11, 2016); https://doi.org/10.1115/HT2016-7010.
  • J. TENCER et al., “Accelerated Solution of Discrete Ordinates Approximation to the Boltzmann Transport Equation for a Gray Absorbing-Emitting Medium via Model Reduction,” J. Heat Transfer, 139, 12, 122701 (2017); https://doi.org/10.1115/1.4037098.
  • I. UDAGEDARA et al., “Reduced Order Modeling for Accelerated Monte Carlo Simulations in Radiation Transport,” Appl. Math. Comput., 267, 237 (2015); https://doi.org/10.1016/j.amc.2015.03.113.
  • Y. SUN et al., “A POD Reduced-Order Model for Resolving the Neutron Transport Problems of Nuclear Reactor,” Ann. Nucl. Energy, 149, 107799 (2020); https://doi.org/10.1016/j.anucene.2020.107799.
  • A. SARTORI et al., “Comparison of a Modal Method and a Proper Orthogonal Decomposition Approach for Multi-group Time-Dependent Reactor Spatial Kinetics,” Ann. Nucl. Energy, 71, 217 (2014); https://doi.org/10.1016/j.anucene.2014.03.043.
  • K. TSUJITA, T. ENDO, and A. YAMAMOTO, “Fast Reproduction of Time-Dependent Diffusion Calculations Using the Reduced Order Model Based on the Proper Orthogonal and Singular Value Decompositions,” J. Nucl. Sci. Technol., 58, 2, 173 (2021); https://doi.org/10.1080/00223131.2020.1814891.
  • J. M. COALE, “Reduced Order Models for Thermal Radiative Transfer Problems Based on Low-Order Transport Equations and the Proper Orthogonal Decomposition,” North Carolina State University ProQuest Dissertations Publishing. (2019).
  • R. PINNAU, Model Reduction via Proper Orthogonal Decomposition, pp. 95–109, Springer Berlin Heidelberg, Berlin, Heidelberg (2008); https://doi.org/10.1007/978-3-540-78841-65.
  • P. A. BEHNE, J. C. RAGUSA, and J. E. MOREL, “Model-Order Reduction Approaches for SN Radiation Transport,” Proceedings, International Conference on Mathematics Computational Methods Applied to Nuclear Science and Engineering, Portland, OR, August 25-29, 2019, (2019).
  • P. BEHNE, J. VERMAAK, and J. C. RAGUSA, “Minimally-Invasive Parametric Model-Order Reduction for Sweep-Based Radiation Transport,” J. Comput. Phys., 469 (2022).
  • P. BENNER, S. GUGERCIN, and K. WILLCOX, “A Survey of Projection-based Model Reduction Methods for Parametric Dynamical Systems,” SIAM Rev., 57, 4, 483 (2015); https://doi.org/10.1137/130932715.
  • C. E. HEANEY et al., “Reduced-Order Modelling Applied to the Multigroup Neutron Diffusion Equation Using a Nonlinear Interpolation Method for Control-Rod Movement,” Energies, 14, 5, 1350 (2021); https://doi.org/10.3390/en14051350.
  • P. A. BEHNE, J. C. RAGUSA, and M. TANO, “Projection-based Model Order Reduction Based on Affine Decomposition of the Operators,” Proceedings, International Conference on Mathematics Computational Methods Applied to Nuclear Science and Engineering, October 3-7, 2021 (2021).
  • M. TANO et al., “Affine Reduced-Order Model for Radiation Transport Problems in Cylindrical Coordinates,” Ann. Nucl. Energy, 158, 108214 (2021); https://doi.org/10.1016/j.anucene.2021.108214.
  • T. BUI-THANH, K. WILLCOX, and O. GHATTAS, “Parametric Reduced-Order Models for Probabilistic Analysis of Unsteady Aerodynamic Applications,” AIAA J., 46, 10, 2520 (2008); https://doi.org/10.2514/1.35850.
  • W. R. D. BOYD III, “Reactor Agnostic Multi-Group Cross Section Generation for Fine-Mesh Deterministic Neutron Transport Simulations,” PhD Thesis, Massachusetts Institute of Technology, Department of Nuclear Science and Engineering (2017).
  • T. R. HILL, “ONETRAN: A Discrete Ordinates Finite Element Code for the Solution of the One-Dimensional Multigroup Transport Equation,” Los Alamos National Laboratory (1975).
  • W. H. REED and T. R. HILL, “Triangular Mesh Methods for the Neutron Transport Equation,” Los Alamos Scientific Laboratory (1973).
  • T. A. WAREING et al., “Discontinuous Finite Element SN Methods on Three-Dimensional Unstructured Grids,” Nucl. Sci. Eng., 138, 3, 256 (2001); https://doi.org/10.13182/NSE138-256.
  • T. BUI-THANH, K. WILLCOX, and O. GHATTAS, “Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space,” SIAM J. Sci. Comput., 30, 6, 3270 (2008); https://doi.org/10.1137/070694855.
  • B. PEHERSTORFER and K. WILLCOX, “Data-driven Operator Inference for Nonintrusive Projection-based Model Reduction,” Comput. Methods Appl. Mech. Eng., 306, 196 (2016); https://doi.org/10.1016/j.cma.2016.03.025.
  • K. KUNISCH and S. VOLKWEIN, “Optimal Snapshot Location for Computing POD Basis Functions,” ESAIM: Math. Model. Numer. Anal., 44, 3, 509 (2010); https://doi.org/10.1051/m2an/2010011.
  • T. A. BRUNNER, “Forms of Approximate Radiation Transport,” Technical report, Sandia National Laboratories (2002).