136
Views
2
CrossRef citations to date
0
Altmetric
Technical Papers

Post-Neutron Mass Yield Distribution in the Thermal Neutron–Induced Fission of 235U

, , &
Pages 485-509 | Received 26 Apr 2022, Accepted 06 Oct 2022, Published online: 21 Dec 2022

References

  • R. VANDENBOSCH and J. R. HUIZENGA, Nuclear Fission, Academic, New York (1973).
  • C. WAGEMANS, The Nuclear Fission Process, CRC Press, London (1990).
  • J. P. UNIK et al., in Proc. 3rd IAEA Symp. on Physics and Chemistry of Fission, Rochester, New York, August 13–17, 1973, Vol. II, p. 19, International Atomic Energy Agency ( 1974).
  • D. C. HOFFMAN and M. M. HOFFMAN, “Post-Fission Phenomena,” Ann. Rev. Nucl. Sci., 24, 151 (1974); http://dx.doi.org/10.1146/annurev.ns.24.120174.001055.
  • H. NAIK et al., “Systematics of Charge Distribution Studies in Low-Energy Fission of Actinides,” Nucl. Phys. A, 618, 143 (1997); http://dx.doi.org/10.1016/S0375-9474(97)80002-4.
  • J. P. BOCQUET et al., “Characteristics of Mass and Nuclear Charge Distributions of 229Th (nth, f). Implications for Fission Dynamics,” Z. Phys. A, 335, 41 (1990).
  • G. MARIOLOPOULOS et al., “Charge Distributions in Low-Energy Nuclear Fission and Their Relevance to Fission Dynamics,” Nucl. Phys. A, 361, 213 (1981); http://dx.doi.org/10.1016/0375-9474(81)90477-2.
  • M. DJEBARA et al., “Measurement of Charge Distributions for 229Th(nth, f) and 232U(nth, f),” Nucl. Phys. A, 425, 120 (1984); http://dx.doi.org/10.1016/0375-9474(84)90219-7.
  • M. HADDAD et al., “Post-Neutron Mass Distribution for 232U(nth,f),” Radiochim. Acta, 46, 23 (1989); http://dx.doi.org/10.1524/ract.1989.46.1.23.
  • H. NAIK, R. J. SINGH, and R. H. IYER, “Charge Distribution in Low Energy Fission of Actinides,” J. Phys. G: Nucl. Phys., 30, 107 (2004); http://dx.doi.org/10.1088/0954-3899/30/2/010.
  • J. P. BOCQUET and R. BRISSOT, “Mass, Energy and Nuclear Charge Distribution of Fission Fragments,” Nucl. Phys. A, 502, 213 (1989); http://dx.doi.org/10.1016/0375-9474(89)90663-5.
  • U. QUADE et al., “Nuclide Yields of Light Fission Products from Thermal-Neutron Induced Fission of 233U at Different Kinetic Energies,” Nucl. Phys. A, 487, 1 (1988); http://dx.doi.org/10.1016/0375-9474(88)90127-3.
  • W. LANG et al., “Nuclear Charge and Mass Yields for 235U(nth, f) as a Function of the Kinetic Energy of the Fission Products,” Nucl. Phys. A, 345, 34 (1980); http://dx.doi.org/10.1016/0375-9474(80)90411-X.
  • H.-G. CLERC et al., Z. Phys. A, 335, 41 (1975).
  • S. AMIEL, H. FELDSTEIN, and T. IZAK-BIRAN, “Distributions of Fission Products from Various Low-Energy Fission Reactions and the Systematics of the Odd-Even Fluctuations,” Phys. Rev. C, 15, 2119 (1977); http://dx.doi.org/10.1103/PhysRevC.15.2119.
  • T. IZAK-BIRAN and S. AMIEL, “Independent Yields of Fast-Neutron Fission of 232Th: Observation of Proton Odd-Even Effect and Neutron Shell Effect on the Yields,” Phys. Rev. C, 16, 266 (1977); http://dx.doi.org/10.1103/PhysRevC.16.266.
  • M. HADDAD et al., “Post-Neutron Mass Distribution for 238Pu(nth, f),” Nucl. Phys. A, 481, 333 (1988); http://dx.doi.org/10.1016/0375-9474(88)90500-3.
  • C. SCHMITT et al., “Fission Yields at Different Fission-Product Kinetic Energies for Thermal-Neutron-Induced Fission of 239 Pu,” Nucl. Phys. A, 430, 21 (1984).
  • P. SCHILLEBECKX et al., “Investigation of Mass, Charge and Energy of 241Pu(nth, f) Fragments with the Cosi-Fan-Tutte Spectrometer,” Nucl. Phys. A, 580, 15 (1994); http://dx.doi.org/10.1016/0375-9474(94)90812-5.
  • D. ROCHMAN et al., “Isotopic Yields from the Reaction 245Cm(nth,f) at the Lohengrin Mass Separator,” Nucl. Phys. A, 710, 3 (2002); http://dx.doi.org/10.1016/S0375-9474(02)01026-6.
  • M. DJEBARA et al., “Mass and Nuclear-Charge Yields for 249Cf(nth, f) at Different Fission-Product Kinetic Energies,” Nucl. Phys. A, 496, 346 (1989); http://dx.doi.org/10.1016/0375-9474(89)90179-6.
  • B. D. WILKINS, E. P. STEINBERG, and R. R. CHASMAN, “Scission-Point Model of Nuclear Fission Based on Deformed-Shell Effects,” Phys. Rev. C, 14, 1832 (1976).
  • U. BROSA, S. GROSSMANN, and A. MULLER, “Nuclear Scission,” Phys. Rep., 197, 167 (1990); http://dx.doi.org/10.1016/0370-1573(90)90114-H.
  • K. OYAMATSU et al., “New Method for Calculating Aggregate Fission Product Decay Heat with Full Use of Macroscopic-Measurement Data,” J. Nucl. Sci. Techol., 38, 477 (2001); http://dx.doi.org/10.1080/18811248.2001.9715057.
  • IAEA-EXFOR Database Version of 2020-01-28 website, International Atomic Energy Agency, Nuclear Reaction Data Centres; http://www-nds.iaea.org/exfor (current as of Apr. 26, 2022).
  • N. OTUKA et al., “Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration Between Nuclear Reaction Data Centres (NRDC),” Nucl Data Sheets, 120, 272 (2014); http://dx.doi.org/10.1016/j.nds.2014.07.065.
  • H. C. JAIN and M. V. RAMANIAH, “BARC Report,” BARC-584, Bhabha Atomic Research Centre (1971).
  • V. K. RAO et al., “Search for Low-Yield Products in the Neutron-Induced Highly Asymmetric Fission of Uranium,” Phys. Rev. C, 9, 1506 (1974); http://dx.doi.org/10.1103/PhysRevC.9.1506.
  • A. RAMASWAMI et al., “Absolute Fission Yield Measurements by track-etch-cum-γ Spectrometry,” J. Inorg. Nucl. Chem., 41, 1531 (1979); http://dx.doi.org/10.1016/0022-1902(79)80169-4.
  • A. RAMASWAMI, V. NATARAJAN, and R. H. IYER, “Absolute Yields of Short-Lived Fission Products in the Thermal Neutron Induced Fission of 235U and 239Pu,” J. Inorg. Nucl. Chem., 42, 1213 (1980); http://dx.doi.org/10.1016/0022-1902(80)80274-0.
  • A. G. C. NAIR et al., “Cumulative Yields of Short-Lived Ruthenium Isotopes in the Thermal Neutron Induced Fission of 233U, 235U and 239Pu,” J. Radioanal. Nucl. Chem., 91, 73 (1985); http://dx.doi.org/10.1007/BF02036311.
  • S. A. CHITAMBAR, H. C. JAIN, and M. V. RAMANIAH, “Fission Yields in the Thermal Neutron Fission of 233U, 235U, 239Pu and 241Pu,” Radiochim. Acta, 42, 169 (1987); http://dx.doi.org/10.1524/ract.1987.42.4.169.
  • H. NAIK, S. P. DANGE, and T. DATTA, “Charge Distribution in the Mass Region 128 – 134 in Low Energy Fission of Actinides,” Radiochim. Acta, 62, 1 (1993); http://dx.doi.org/10.1524/ract.1993.62.12.1.
  • H. NAIK, R. J. SINGH, and S. P. DANGE, “Post-Neutron Mass Chain Yield Distribution in the Thermal Neutron Induced Fission of 229Th,” Eur. Phys. J. A, 56, 82 (2020); http://dx.doi.org/10.1140/epja/s10050-020-00080-5.
  • H. NAIK et al., “Post-Neutron Mass Yield Distribution in the Thermal Neutron Induced Fission of 245Cm,” Eur. Phys. J, 56, 227 (2020); http://dx.doi.org/10.1140/epja/s10050-020-00228-3.
  • H. NAIK et al., “Post-Neutron Mass Yield Distribution in the Spontaneous Fission of 252Cf,” Nucl. Sci. Eng., 195, 7, 717 (2021); http://dx.doi.org/10.1080/00295639.2020.1866389.
  • K. F. FLYNN, “ Radiochemical Procedures and Techniques,” ANL-75-24, Argonne National Laboratory (1975).
  • NuDat 2.6 website, Brookhaven National Laboratory, National Nuclear Data Center (updated 2011); http://www.nndc.bnl.gov/ (current as of Apr. 26, 2022).
  • S. Y. F. CHU, L. P. EKSTROM, and R. B. FIRESTONE, “The Lund LBNL, Nuclear Data Search, Version 2.0, February 1999, WWW Table of Radioactive Isotopes,” Lawrence Berkeley National Laboratory; http://nucleardata.nuclear.lu.se/toi/ (current as of Apr. 26, 2022).
  • J. BLACHOT and C. FICHE, Ann. Phys. (Paris), 6, 3 (1981).
  • “Evaluated Nuclear Data Library Descriptions, ENDF/B-VIII.0 and JEFF-3.3,” Organisation for Economic Co-operation and Development, Nuclear Energy Agency; http://www.oecd-nea.org/ (current as of Apr. 26, 2022).
  • A. C. WAHL, “Nuclear-Charge Distribution and Delayed-Neutron Yields for Thermal-Neutron-Induced Fission of 235U, 233U, and 239Pu and for Spontaneous Fission of 252Cf,” At. Data Nucl. Data Tables, 39, 1 (1988); http://dx.doi.org/10.1016/0092-640X(88)90016-2.
  • A. C. WAHL,“ Fission Product Yield Data for the Transmutation of Minor Actinide Nuclear Waste,” STI/PUB/1286, International Atomic Energy Agency (2008).
  • H. N. ERTEN and N. K. ARAS, “Charge Distribution in the Spontaneous Fission of 252Cf,” J. Inorg. Nucl. Chem., 41, 149 (1979); http://dx.doi.org/10.1016/0022-1902(79)80502-3.
  • C. D. CORYELL, M. KAPLAN, and R. D. FINK, “Search for Correlations of Most Probable Nuclear Charge ZP of Primary Fission Fragments with Composition and Excitation Energy,” Can. J. Chem., 39, 646 (1961); http://dx.doi.org/10.1139/v61-078.
  • N. SUGARMAN and A. TURKEVICH, Radiochemical Studies: The Fission Product, Vol. 3, p. 1396, C. D. CORYELL and N. SUGARMAN, Eds., McGraw-Hill, New York (1951).
  • B. F. RIDER, “Compilation of Fission Product Yields, Vallecitos Nuclear Centre Report,” NEDO-12154-3 C, ENDF-327, General Electric Company (1981).
  • T. R. ENGLAND and B. F. RIDER, “Evaluation and Compilation of Fission Product Yields,” LA-UR-94-3106, ENDF–349, ENDF/B-VI, Los Alamos National Laboratory (1993).
  • G. SCAMPS and C. SIMENEL, “Impact of Pear-Shaped Fission Fragments on Mass-Asymmetric Fission in Actinides,” Nature, 564, 382 (2018); http://dx.doi.org/10.1038/s41586-018-0780-0.
  • G. SCAMPS and C. SIMENEL, “Effect of Shell Structure on the Fission of Sub-Lead Nuclei,” Phys. Rev. C, 100, 041602(R) (2019); http://dx.doi.org/10.1103/PhysRevC.100.041602.
  • H. R. VON GUNTEN, K. F. FLYNN, and L. E. GLENDENIN, “Distribution of Mass and Charge in the Fission of 245Cm,” Phys. Rev., 161, 1192 (1967); https://doi.org/10.1103/PhysRev.161.1192.
  • R. J. SINGH et al., “Mass Distribution in the Thermal Neutron Induced Fission of 229Th,” Radiochim. Acta, 31, 69 (1982); http://dx.doi.org/10.1524/ract.1982.31.12.69.
  • M. HADDAD et al., “Post-Neutron Mass Distribution of 229Th(nth, f)+,” Radiochim. Acta, 42, 165 (1987); http://dx.doi.org/10.1524/ract.1987.42.4.165.
  • S. B. MANOHAR et al., “Mass Distribution in the Neutron Induced Fission of 232U,” Phys. Rev. C, 19, 1827 (1979); http://dx.doi.org/10.1103/PhysRevC.19.1827.
  • H. NAIK et al., “Post-Neutron Mass Yield Distribution in the Thermal Neutron Induced Fission of 238Pu,” Ann. Nucl. Energy, 162, 108493 (2021); http://dx.doi.org/10.1016/j.anucene.2021.108493.
  • H. NAIK et al., “Post-Neutron Mass Yield Distribution in the Thermal Neutron Induced Fission of 241Pu,” Eur. Phys. J. A, 56, 186 (2020).
  • J. G. CUNINGHAME, “The Mass Yield Curve for Fission of Am241 by Pile Neutrons,” J. Inorg. Nucl. Chem., 4, 1 (1957); http://dx.doi.org/10.1016/0022-1902(57)80100-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.