171
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A Generalized Eigenvalue Formulation for Core-Design Applications

ORCID Icon, , &
Pages 2047-2071 | Received 19 Jul 2022, Accepted 06 Oct 2022, Published online: 17 Jan 2023

References

  • L. N. TREFETHEN and M. EMBREE, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, New Jersey (2005).
  • K. M. CASE and P. L. ZWEIFEL, Linear Transport Theory, Addison-Wesley, Reading (1967).
  • D. G. CACUCI, Sensitivity & Uncertainty Analysis, Volume I: Theory, p. 285, Chapman & Hall/CRC, New York (2003).
  • A. GANDINI, “Higher Order Time-Dependent Generalized Perturbation Theory,” Nucl. Sci. Eng., 67, 91 (1978); https://doi.org/10.13182/NSE78-A27240.
  • G. I. BELL and S. GLASSTONE, Nuclear Reactor Theory, Van Nostrand Reinhold, New York, New York (1970).
  • A. F. HENRY, “The Application of Inhour Modes to the Description of Non-separable Reactor Transients,” Nucl. Sci. Eng., 20, 338 (1964); https://doi.org/10.13182/NSE64-A19579.
  • O. HANH and F. STRASSMANN, “Über den nachweis und das verhalten der bei der bestrahlung des urans mittels neutronen entstehenden erdalkalimetalle,” Naturwissenschaften, 27, 11 (1939); https://doi.org/10.1007/BF01488241.
  • E. FERMI, “Purpose of the Experiment at the Argonne Forest. Meaning of the Reproduction Factor “k.” Technical Report CP-283, Chicago University, Metallurgical Laboratory, Chicago, Illinois (1942).
  • B. DAVISON, Neutron Transport Theory, Clarendon Press, Oxford (1957).
  • Y. RONEN, D. SHALITIN, and J. J. WAGSCHAL, “A Useful Different Eigenvalue for the Transport Equation,” Trans. Am. Nucl. Soc., 24, 474 (1976).
  • N. ABRATE et al., “On Some Features of the Eigenvalue Problem for the PN Approximation of the Neutron Transport Equation,” Ann. Nucl. Energy, 163, 108 (2021); https://doi.org/10.1016/j.anucene.2021.108477.
  • D. G. CACUCI et al., “Eigenvalue-Dependent Neutron Energy Spectra: Definitions, Analyses, and Applications,” Nucl. Sci. Eng., 81, 432 (1982); https://doi.org/10.13182/NSE82-A20284.
  • G. VELARDE, C. AHNERT, and J. M. ARAGONÉS, “Analysis of the Eigenvalue Equations in K, λ, γ, and α Applied to Some Fast- and Thermal-Neutron Systems,” Nucl. Sci. Eng., 66, 284 (1978); https://doi.org/10.13182/NSE78-A27213.
  • N. ABRATE et al., “Eigenvalue Formulations for the PN Approximation to the Neutron Transport Equation,” J. Comput. Theor Transport., 50, 407 (2021); https://doi.org/10.1080/23324309.2020.1856879.
  • A. CARREÑO et al., “Modal Methods for the Neutron Diffusion Equation Using Different Spatial Modes,” Prog. Nucl. Energy, 115, 181 (2019); https://doi.org/10.1016/j.pnucene.2019.03.040.
  • K. BURN et al., “Preliminary Nuclear Design Calculations for the PDS-xADS LBE-Cooled Core,” Proc. Int. Workshop on P&T and ADS Development, Mol, Belgium (2003).
  • S. BALAY et al., “PETSc Users Manual,” Technical Report ANL-95/11—Rev. 3.13, Argonne National Laboratory (2020).
  • V. HERNANDEZ, J. E. ROMAN, and V. VIDAL, “SLEPc: A Scalable and Flexible Toolkit for the Solution of Eigenvalue Problems,” ACM Trans. Math. Software, 31, 351 (2005); https://doi.org/10.1145/1089014.1089019.
  • A. CARREÑO et al., “Spatial Modes for the Neutron Diffusion Equation and Their Computation,” Ann. Nucl. Energy, 110, 1010 (2017); https://doi.org/10.1016/j.anucene.2017.08.018.
  • N. ABRATE et al., “Assessment of Numerical Methods for the Evaluation of Higher-Order Harmonics in Diffusion Theory,” Ann. Nucl. Energy, 128, 455 (2019); https://doi.org/10.1016/j.anucene.2019.01.011.
  • A. M. WEINBERG and E. P. WIGNER, The Physical Theory of Neutron Chain Reactors, University of Chicago Press, Chicago, Illinois (1958).
  • W. D. BECKNER and R. A. RYDIN, “A Higher Order Relationship Between Static Power Tilts and Eigenvalue Separation in Nuclear Reactors,” Nucl. Sci. Eng., 56, 131 (1975); https://doi.org/10.13182/NSE75-A26652.
  • V. VITALI, “Monte Carlo Analysis of Heterogeneity and Core Decoupling Effects on Reactor Kinetics: Application to the EOLE Critical Facility,” PhD Thesis, Université Paris-Saclay, Nuclear Theory (2020).
  • Y. SAAD, Numerical Methods for Large Eigenvalue Problems, Manchester University Press, Manchester, United Kingdom (1992).
  • A. QUARTERONI, R. SACCO, and F. SALERI, Numerical Mathematics, Vol. 37, Springer Science & Business Media (2010).
  • C. ARTIOLI, G. GRASSO, and C. PETROVICH, “A New Paradigm for Core Design Aimed at the Sustainability of Nuclear Energy: The Solution of the Extended Equilibrium State,” Ann. Nucl. Energy, 37, 7, 915 (2010); https://doi.org/10.1016/j.anucene.2010.03.016.
  • D. G. CACUCI, Handbook of Nuclear Engineering: Vol. 1: Nuclear Engineering Fundamentals; Vol. 2: Reactor Design; Vol. 3: Reactor Analysis; Vol. 4: Reactors of Generations III and IV; Vol. 5: Fuel Cycles, Decommissioning, Waste Disposal and Safeguards, Vol. 1, Springer, New York (2010).
  • A. GANDINI, “On the Standard Perturbation Theory,” Nucl. Sci. Eng., 79, 4, 426 (1981); https://doi.org/10.13182/NSE81-A21393.
  • A. GANDINI, Advances in Nuclear Science and Technology. Advances in Nuclear Science and Technology, Vol. 19, J. LEWINS and M. BECKER, Eds., Springer, Boston, Massachusetts (1987).
  • K. SHIRAKATA, T. SANDA, and F. NAKASHIMA, “Spatial Neutronic Decoupling of Large Fast Breeder Reactor Cores: Application to Nuclear Core Design Method,” Nucl. Sci. Eng., 131, 2, 187 (1999); https://doi.org/10.13182/NSE99-A2027.
  • J. LEPPÄNEN et al., “The Serpent Monte Carlo Code: Status, Development and Applications in 2013,” Ann. Nucl. Energy, 82, 142 (2015); https://doi.org/10.1016/j.anucene.2014.08.024.
  • M. ALLIBERT et al., “SAMOFAR European Project D1.1 Description of Initial Reference Design and Identification of Safety Aspects,” Technical Report 661891, Euratom (2017).
  • G. F. NALLO et al., “Neutronic Benchmark of the FRENETIC Code for the Multiphysics Analysis of Lead Fast Reactors,” Eur. Phys. J. Plus, 135, 238 (2020); https://doi.org/10.1140/epjp/s13360-020-00171-8.
  • M. MASSONE et al., “Code-to-Code SIMMER/FRENETIC Comparison for the Neutronic Simulation of Lead-Cooled Fast Reactors,” Ann. Nucl. Energy, 174, 109124 (2022); https://doi.org/10.1016/j.anucene.2022.109124.
  • J. RHODES, K. SMITH, and D. LEE, “CASMO-5 Development and Applications,” Proc. PHYSOR-2006 Conf., American Nuclear Society Topl. Mtg. on Reactor Physics, Vancouver, British Columbia, Canada, Vol. 144 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.