271
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

A Nonintrusive Nuclear Data Uncertainty Propagation Study for the ARC Fusion Reactor Design

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2192-2216 | Received 19 Aug 2022, Accepted 23 Nov 2022, Published online: 08 Feb 2023

References

  • B. SORBOM et al., “ARC: A Compact, High-Field, Fusion Nuclear Science Facility and Demonstration Power Plant with Demountable Magnets,” Fusion Eng. Des., 100, 378 (2015); https://doi.org/10.1016/j.fusengdes.2015.07.008.
  • A. J. H. DONNÉ et al., “European Research Roadmap to the Realisation of Fusion Energy,” EUROfusion Consortium, Germany (2018).
  • J. LEPPÄNEN et al., “The Serpent Monte Carlo Code: Status, Development and Applications in 2013,” Ann. Nucl. Energy, 82, 142 (2013); https://doi.org/10.1016/j.anucene.2014.08.024.
  • A. AIMETTA et al., “Neutronic Analysis of the Fusion Reactor ARC: Monte Carlo Simulations with the Serpent,” Fusion Sci. Technol., 78, 275 (2022); https://doi.org/10.1080/15361055.2021.2003151.
  • A. AIMETTA, “Neutronic Analysis of the Fusion Reactor ARC: Monte Carlo Simulations with the Serpent Code,” (2020); https://doi.org/10.5281/zenodo.5118690.
  • D. G. CACUCI, Sensitivity & Uncertainty Analysis, Volume I: Theory, Chapman & Hall/CRC, New York (2003); https://doi.org/10.1201/9780203911396.ch10.
  • A. GANDINI, M. SALVATORES, and I. D. BONO, “Sensitivity Study of Fast Reactors Using Generalized Perturbation Techniques,” Fast Reactor Physics Vol. I. Proc. of a Symposium on Fast Reactor Physics and Related Safety Problems, International Atomic Energy Agency (1968).
  • M. AUFIERO, M. MARTIN, and M. FRATONI, “XGPT: Extending Monte Carlo Generalized Perturbation Theory Capabilities to Continuous-Energy Sensitivity Functions,” Ann. Nucl. Energy, 96, 295 (2016); https://doi.org/10.1016/j.anucene.2016.06.012.
  • N. ABRATE et al., “Nuclear Data Uncertainty Quantification in Molten Salt Reactors with XGPT,” presented at the Int. Conf. on Mathematics Computational Methods and Reactor Physics, Portland, Oregon, August 25–29, 2019 (2019).
  • N. ABRATE, S. DULLA, and P. RAVETTO, “Generalized Perturbation Techniques for Uncertainty Quantification in Lead-Cooled Fast Reactors,” Ann. Nucl. Energy, 164, 108623 (2021); https://doi.org/10.1016/j.anucene.2021.108623.
  • A. KONING and D. ROCHMAN, “Towards Sustainable Nuclear Energy: Putting Nuclear Physics to Work,” Ann. Nucl. Energy, 35, 2024 (2008); https://doi.org/10.1016/j.anucene.2008.06.004.
  • D. ROCHMAN et al., “Uncertainty Propagation with Fast Monte Carlo Techniques,” Nucl. Data Sheets, 118, 367 (2014); https://doi.org/10.1016/j.nds.2014.04.082.
  • W. ZWERMANN et al., “Aleatoric and Epistemic Uncertainties in Sampling Based Nuclear Data Uncertainty and Sensitivity Analyses,” Proc. Int. Topl. Mtg. on Advances in Reactor Physics (PHYSOR ‘12), Knoxville, Tennessee, April 15–20, 2012 (2012).
  • S. J. JULIER and J. K. UHLMANN, “New Extension of the Kalman Filter to Nonlinear Systems,” Signal Processing, Sensor Fusion, and Target Recognition VI, Vol. 3068, I. KADAR, Ed., pp. 182–193, International Society for Optics and Photonics (1997).
  • O. P. LE MAÎTRE and O. M. KNIO, Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. Scientific Computation, Springer, Dordrecht (2010).
  • D. LEICHTLE et al., “Sensitivity and Uncertainty Analyses of the HCLL Mock-Up Experiment,” Fusion Eng. Des., 85, 10, 1724 (2010); https://doi.org/10.1016/j.fusengdes.2010.05.023.
  • D. LEICHTLE et al., “Sensitivity and Uncertainty Analyses of the Tritium Production in the HCPB Breeder Blanket Mock-Up Experiment,” Fusion Eng. Des., 82, 15, 2406 (2007); https://doi.org/10.1016/j.fusengdes.2007.08.007.
  • U. FISCHER, D. LEICHTLE, and R. PEREL, “Monte Carlo Based Sensitivity and Uncertainty Analysis of the HCPB Test Blanket Module in ITER,” Fusion Eng. Des., 83, 7, 1222 (2008); https://doi.org/10.1016/j.fusengdes.2008.06.053.
  • I. KODELI, “Multidimensional Deterministic Nuclear Data Sensitivity and Uncertainty Code System: Method and Application,” Nucl. Sci. Eng., 138, 1, 45 (2001); https://doi.org/10.13182/NSE00-43.
  • B. KOS, A. ČUFAR, and I. A. KODELI, “ASUSD Nuclear Data Sensitivity and Uncertainty Program Package: Validation on Fusion and Fission Benchmark Experiments,” Nucl. Eng. Technol., 53, 7, 2151 (2021); https://doi.org/10.1016/j.net.2021.01.034.
  • A. BUCALOSSI et al., “Comparison Between Best-Estimate–Plus–Uncertainty Methods and Conservative Tools for Nuclear Power Plant Licensing,” Nucl. Technol., 172, 1, 29 (2010); https://doi.org/10.13182/NT172-29.
  • F. D’AURIA, C. CAMARGO, and O. MAZZANTINI, “The Best Estimate Plus Uncertainty (BEPU) Approach in Licensing of Current Nuclear Reactors,” Nucl. Eng. Des., 248, 317 (2012); https://doi.org/10.1016/j.nucengdes.2012.04.002.
  • R. MACFARLANE et al., “The NJOY Nuclear Data Processing System, Version 2016,” Los Alamos National Laboratory (2017); https://www.osti.gov/biblio/1338791.
  • U. FISCHER et al., “Required, Achievable and Target TBR for the European DEMO,” Fusion Eng. Des., 155, 111553 (2020); https://doi.org/10.1016/j.fusengdes.2020.111553.
  • L. FIORITO et al., “Nuclear Data Uncertainty Propagation to Integral Responses Using SANDY,” Ann. Nucl. Energy, 101, 359 (2017); https://doi.org/10.1016/j.anucene.2016.11.026.
  • C. DE MULATIER et al., “The Critical Catastrophe Revisited,” J. Stat. Mech: Theory Exp., 2015, 8, P08021 (2015); https://iopscience.iop.org/article/10.1088/1742-5468/2015/08/P08021/meta.
  • B. FOAD, A. YAMAMOTO, and T. ENDO, “Efficient Uncertainty Quantification for PWR During LOCA Using Unscented Transform with Singular Value Decomposition,” Ann. Nucl. Energy, 141, 107341 (2020); https://doi.org/10.1016/j.anucene.2020.107341.
  • S. SEABOLD and J. PERKTOLD, “Statsmodels: Econometric and Statistical Modeling with Python,” presented at the 9th Python in Science Conf., Austin, Texas, June 28–July 3, 2010 (2010).
  • R. BORSDORF, N. J. HIGHAM, and M. RAYDAN, “Computing a Nearest Correlation Matrix with Factor Structure,” SIAM J. Matrix Anal. Appl., 31, 2603 (2010); https://doi.org/10.1137/090776718.
  • N. WIENER, “The Homogeneous Chaos,” Am. J. Math., 60, 4, 897 (1938); https://doi.org/10.2307/2371268.
  • D. XIU and G. E. KARNIADAKIS, “The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations,” SIAM J. Sci. Comput., 24, 2, 619 (2002); https://doi.org/10.1137/S1064827501387826.
  • C. CANUTO et al., Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics, Springer Science & Business Media (2007); https://link.springer.com/book/10.1007/978-3-540-30728-0.
  • A. KAINTURA, T. DHAENE, and D. SPINA, “Review of Polynomial Chaos-Based Methods for Uncertainty Quantification in Modern Integrated Circuits,” Electronics, 7, 3, 30 (2018); https://doi.org/10.3390/electronics7030030.
  • R. BELLMAN, Dynamic Programming, Rand Corporation Research Studies, Princeton University Press (1957); https://books.google.it/books?id=wdtoPwAACAAJ.
  • J. FEINBERG and H. P. LANGTANGEN, “Chaospy: An Open Source Tool for Designing Methods of Uncertainty Quantification,” J. Comput. Sci., 11, 46 (2015); https://doi.org/10.1016/j.jocs.2015.08.008.
  • A. AIMETTA, “A Non-intrusive Nuclear Data Uncertainty Propagation Study for the ARC Fusion Reactor Design,” (2022); https://doi.org/10.5281/zenodo.7341479.
  • “Cross Section Evaluation Working Group (CSEWG),” National Nuclear Data Center; https://www.nndc.bnl.gov/csewg/.
  • G. RIMPAULT et al., “The ER-ANOS Code and Data System for Fast Reactor Neutronic Analyses,” Proc. Int. Conf. on Physics of Reactors (PHYSOR 2002), Seoul, South Korea, p. 1134 (2002); https://hal.archives-ouvertes.fr/cea-02906396/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.