372
Views
3
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLES

Coupled Monte Carlo Transport and Conjugate Heat Transfer for Wire-Wrapped Bundles Within the MOOSE Framework

ORCID Icon, , , , &
Pages 2561-2584 | Received 19 Aug 2022, Accepted 12 Dec 2022, Published online: 15 Feb 2023

References

  • C. J. PERMANN et al., “MOOSE: Enabling Massively Parallel Multiphysics Simulation,” SoftwareX, 11, 100430 (2020); http://doi.org/10.1016/j.softx.2020.100430.
  • P. FISCHER et al., “NekRS, a GPU-Accelerated Spectral Element Navier-Stokes Solver,” arXiv:2104.05829 (Apr. 2021); https://doi.org/10.48550/arXiv.2104.05829
  • P. K. ROMANO et al., “OpenMC: A State-of-the-Art Monte Carlo Code for Research and Development,” Ann. Nucl. Energy, 82, 90 (2015); https://doi.org/10.1016/j.anucene.2014.07.048
  • E. MERZARI et al., “Cardinal: A Lower Length-Scale Multiphysics Simulator for Pebble-Bed Reactors,” Nucl. Technol., 207, 7, 1118 (2021); https://doi.org/10.1080/00295450.2020.1824471
  • P. FISCHER et al., “Highly Optimized Full-Core Reactor Simulations on Summit,” arXiv:2110.01716 (Oct. 2021).
  • A. J. NOVAK et al., “Coupled Monte Carlo and Thermal-Fluid Modeling of High Temperature Gas Reactors Using Cardinal,” Ann. Nucl. Energy, 177, 109310 (2022); https://doi.org/10.1016/j.anucene.2022.109310.
  • A. HUXFORD et al., “Development of Innovative Overlapping-Domain Coupling Between SAM and NekRS,” Proc. (2022).
  • Y. YU et al., “Coupled Simulation of Reactor Pressure Vessel (RPV) Subjected to Pressurized Thermal Shock (PTS) Using Cardinal,” Proc. ATH (2022).
  • R. HAROLDSEN, The Story of the BORAX Nuclear Reactor and the EBR-I Meltdown (2008).
  • B. FONTAINE et al., “Description and Preliminary Results of PHENIX Core Flowering Test,” Nucl. Eng. Des., 241, 10, 4143 (2011); https://doi.org/10.1016/j.nucengdes.2011.08.041.
  • J. A. SHIELDS JR., “Bowing in Experimental Breeder Reactor II Reflector Subassemblies,” Nucl. Technol., 52, 2, 214 (1981); https://doi.org/10.13182/NT81-A32666.
  • N. WOZNIAK, E. R. SHEMON, and J. J. GRUDZINSKI, “Review of Tools for Modeling Core Radial Expansion in Liquid Metal-Cooled Fast Reactors,” Technical Report ANL/NSE-20/41, Nuclear Science and Engineering Division, Argonne National Laboratory (2020).
  • X. CHENG and Y. Q. YU, “Local Thermal-Hydraulic Behaviour in Tight 7-Rod Bundles,” Nucl. Eng. Des., 239, 10, 1944 (2009); https://doi.org/10.1016/j.nucengdes.2009.04.010.
  • J. CAHALAN et al., “Advance Burner Reactor 1000MWth Reference Concept,” Technical Report ANL-AFCI-202, Argonne National Laboratory (2007).
  • Y. WANG, S. SCHUNERT, and V. LABOURÉ, “RATTLESNAKE Theory Manual,” Technical Report INL/EXT-17-42103, Idaho National Laboratory (2019).
  • J. D. HALES et al., “BISON Theory Manual,” Technical Report INL/EXT-13-29930 Rev. 3, Idaho National Laboratory (2016).
  • R. HU, “SAM Theory Manual,” Technical Report ANL/NE–17/4, Argonne National Laboratory (2017).
  • A. J. NOVAK et al., “Pronghorn: A Multidimensional Coarse-Mesh Application for Advanced Reactor Thermal Hydraulics,” Nucl. Technol., 207, 7, 1015 (2021); https://doi.org/10.1080/00295450.2020.1825307.
  • J. E. HANSEL et al., “Sockeye Theory Manual,” Technical Report INL/EXT-19-54395, Idaho National Laboratory (2020).
  • A. J. NOVAK et al., “Pronghorn Theory Manual,” Technical Report INL/EXT-18-44453-Rev001, Idaho National Laboratory (2020).
  • “Cardinal: An Open-Source Coupling of NekRS and OpenMC to MOOSE,” Argonne National Laboratory (2022); https://cardinal.cels.anl.gov.
  • A. IVANOV et al., “High Fidelity Simulation of Conventional and Innovative LWR with the Coupled Monte-Carlo Thermal-Hydraulic System MCNP5-SUBCHANFLOW,” Nucl. Eng. Des., 262, 264 (2013); https://doi.org/10.1016/j.nucengdes.2013.05.008.
  • Q. ZHANG et al., “An Efficient Scheme for Coupling OpenMC and FLUENT with Adaptive Load Balancing,” Sci. Technol. Nucl. Ins., 2021, 5549602 (2021); https://doi.org/10.1155/2021/5549602.
  • A. G. MYLONAKIS, M. VARVAYANNI, and N. CATSAROS, “A Newton-Based Jacobian-Free Approach for Neutronic-Monte Carlo/Thermal-Hydraulic Static Coupled Analysis,” Ann. Nucl. Energy, 110, 709 (2017); https://doi.org/10.1016/j.anucene.2017.07.014.
  • J. GUO et al., “A Versatile Method of Coupled Neutronics/Thermal-Hydraulics Based on HDF5,” Proc. M&C (2017).
  • W. GURECKY and E. SCHNEIDER, “Development of an MCNP6-ANSYS FLUENT Multiphysics Coupling Capability,” Proc. ICONE (2016).
  • P. ROMANO et al., “Design of a Code-Agnostic Driver Application for High-Fidelity Neutronic and Thermal-Hydraulic Simulations,” Proc. PHYSOR (2020).
  • J. R. TRAMM et al., “Toward Portable GPU Acceleration of the OpenMC Monte Carlo Particle Transport Code,” Proc. PHYSOR (2022).
  • D. TALER, “Heat Transfer in Turbulent Tube Flow of Liquid Metals,” Procedia Eng., 157, 148 (2016); https://doi.org/10.1016/j.proeng.2016.08.350.
  • J. C. KOK and S. P. SPEKREIJSE, “Efficient and Accurate Implementation of the k-ω Turbulence Model in the NLR Multi-Block Navier-Stokes System,” European Congress on Computational Methods in Applied Sciences and Engineering (2000).
  • S. THANGAM, R. ABID, and C. G. SPEZIALE, “Application of a New k-τ Model to Near Wall Turbulent Flows,” Technical Report AD-A232 844 No. 91-16, National Aeronautics and Space Administration Langley Research Center (1991).
  • R. HU and T. H. FANNING, “A Momentum Source Model for Wire-Wrapped Rod Bundles: Concept, Validation, and Application,” Nucl. Eng. Des., 262, 371 (2013); https://doi.org/10.1016/j.nucengdes.2013.04.026.
  • “Thermal Hydraulic Computational Fluid Dynamics Simulations and Experimental Investigation of Deformed Fuel Assemblies,” Technical Report DOE-AFS-9998321-1, Areva (2017).
  • K. D. HAMMAN and R. A. BERRY, “A CFD Simulation Process for Fast Reactor Fuel Assemblies,” Nucl. Eng. Des., 240, 9, 2304 (2010); https://doi.org/10.1016/j.nucengdes.2009.11.007.
  • M. MARTIN et al., “CFD Verification and Validation of Wire-Wrapped Pin Assemblies,” Nucl. Technol., 206, 9, 1325 (2020); https://doi.org/10.1080/00295450.2020.1727263.
  • L. M. BROCKMEYER et al., “CFD Investigation of Wire-Wrapped Fuel Rod Bundles and Flow Sensitivity to Bundle Size,” Proc. NURETH-16 (2015).
  • I. AHMAD and K. KIM, “Three-Dimensional Analysis of Flow and Heat Transfer in a Wire-Wrapped Fuel Assembly,” Proc. ICAPP (2005).
  • H. W. GODBEE and W. T. ZIEGLER, “Thermal Conductivities of MgO, Al2O3, and ZrO2 Powders to 850°C. I. Experimental,” J. Appl. Phys., 37, 1, 40 (1966); https://doi.org/10.1063/1.1707849.
  • R. W. POWELL, R. P. TYE, and M. J. HICKMAN, “The Thermal Conductivity of Nickel,” Int. J. Heat Mass Transfer, 8, 5, 679 (1965); https://doi.org/10.1016/0017-9310(65)90017-7.
  • Boron Nitride Powder (2022).
  • H. GERWIN et al., “TINTE—Nuclear Calculation Theory Description Report,” Technical Report JUL-4317, Institute for Energy Research (2010).
  • L. LEIBOWITZ and R. A. BLOMQUIST, “Thermal Conductivity and Thermal Expansion of Stainless Steels D9 and HT9,” Int. J. Thermophys., 9, 5, 873 (1988); https://doi.org/10.1007/BF00503252.
  • S. CHANG et al., “Experimental Study of the Flow Characteristics in an SFR Type 61-Pin Rod Bundle Using Iso-Kinetic Sampling Method,” Ann. Nucl. Energy, 106, 160 (2017); https://doi.org/10.1016/j.anucene.2017.03.024.
  • S. K. CHOI et al., “Measurement of Pressure Drop in a Full-Scale Fuel Assembly of a Liquid Metal Reactor,” J. Pressure Vessel Technol., 125, 2, 233 (2003); https://doi.org/10.1115/1.1565076.
  • N. GOTH et al., “PTV/PIV Measurements of Turbulent Flows in Interior Subchannels of a 61-Pin Wire-Wrapped Hexagonal Fuel Bundle,” Int. J. Heat Fluid Flow, 71, 295 (2018); https://doi.org/10.1016/j.ijheatfluidflow.2018.03.021.
  • M. S. SONG, J. JEONG, and E. S. KIM, “Flow Visualization on SFR Wire-Wrapped 19-Pin Bundle Geometry Using MIR-PIV-PLIF and Comparisons with RANS-Based CFD Analysis,” Ann. Nucl. Energy, 147, 107653 (2020); https://doi.org/10.1016/j.anucene.2020.107653.
  • M. CHUN and K. SEO, “An Experimental Study and Assessment of Existing Friction Factor Correlations for Wire-Wrapped Fuel Assemblies,” Ann. Nucl. Energy, 28, 17, 1683 (2001); https://doi.org/10.1016/S0306-4549(01)00023-8.
  • K. REHME, “Pressure Drop Correlations for Fuel Element Spacers,” Nucl. Technol., 17, 1, 15 (1973); https://doi.org/10.13182/NT73-A31250.
  • R. M. ROIDT, M. D. CARELLI, and R. A. MARKLEY, “Experimental Investigations of the Hydraulic Field in Wire-Wrapped LMFBR Core Assemblies,” Nucl. Eng. Des., 62, 1–3, 295 (1980); https://doi.org/10.1016/0029-5493(80)90035-7.
  • F. C. ENGEL, R. A. MARKLEY, and A. A. BISHOP, “Laminar, Transition, and Turbulent Parallel Flow Pressure Drop Across Wire-Wrap-Spaced Rod Bundles,” Nucl. Sci. Eng., 69, 2, 290 (1979); https://doi.org/10.13182/NSE79-A20618.
  • F. C. ENGEL et al., “Characterization of Heat Transfer and Temperature Distributions in an Electrically Heated Model of an LMFBR Blanket Assembly,” Nucl. Eng. Des., 62, 1–3, 335 (1980); https://doi.org/10.1016/0029-5493(80)90037-0.
  • M. H. FONTANA et al., “Temperature Distribution in the Duct Wall and at the Exit of a 19-Rod Simulated LMFBR Fuel Assembly (FFM Bundle 2A),” Nucl. Technol., 24, 2, 176 (1974); https://doi.org/10.13182/NT74-A31474.
  • D. J. KRISHNA et al., “Natural Convection in a Partially Heat Generating Rod Bundle Inside an Enclosure,” J. Heat Transfer, 132, 10, 102510 (2010); https://doi.org/10.1115/1.4001610.
  • J. D. BESS et al., “Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor,” Technical Report INL/EXT-09-16524, Idaho National Laboratory (2010).
  • X. CHENG and U. MULLER, “Critical Heat Flux and Turbulent Mixing in Hexagonal Tight Rod Bundles,” Int. J. Multiphase Flow, 24, 8, 1245 (1998); https://doi.org/10.1016/S0301-9322(98)00027-5.
  • “Thermodynamic Properties of DuPont Freon 12 (R-12) Refrigerant,” Technical Report T-12 SI, DuPont.
  • A. E. SLAUGHTER et al., “MOOSE Stochastic Tools: A Module for Performing Parallel, Memory-Efficient in situ Stochastic Simulations,” SoftwareX preprint (2022); https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4049487.
  • D. BLANCHET, L. BUIRON, and N. STAUFF, “Sodium Fast Reactor Core Definitions,” Technical Report Version 1.2, Working Party of Scientific Issues.
  • F. B. BROWN, “On the Use of Shannon Entropy of the Fission Distribution for Assessing Convergence of Monte Carlo Criticality Calculations,” Proc. PHYSOR (2006).
  • J. DUFEK and W. GUDOWSKI, “Stochastic Approximation for Monte Carlo Calculation of Steady-State Conditions in Thermal Reactors,” Nucl. Sci. Eng., 152, 3, 274 (2006); https://doi.org/10.13182/NSE06-2.
  • K. E. REMLEY and D. P. GRIESHEIMER, “A Fully Analytic Coupled Thermal-Neutronics Benchmark and Its Application to Monte Carlo Simulation,” Proc. M&C (2019).
  • Y. MA et al., “Neutronic and Thermal-Mechanical Coupling Analyses in a Solid-State Reactor Using Monte Carlo and Finite Element Methods,” Ann. Nucl. Energy, 151, 107923 (2021); https://doi.org/10.1016/j.anucene.2020.107923.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.