93
Views
0
CrossRef citations to date
0
Altmetric
Regular research articles

Effect of Oxygen Ion Irradiation on Nb-1Zr-0.1C Alloy Characterized Using X-Ray Diffraction Line Profile Analysis

ORCID Icon, , , , , & show all
Pages 3160-3174 | Received 19 Jul 2022, Accepted 13 Mar 2023, Published online: 08 Jun 2023

References

  • S. J. ZINKLE, P. J. MAZIASZ, and R. E. STOLLER, “Dose Dependence of the Microstructural Evolution in Neutron-Irradiated Austenitic Stainless Steel,” J. Nucl. Mater., 206, 2–3, 266 (1993); https://doi.org/10.1016/0022-3115(93)90128-L.
  • S. J. ZINKLE and F. W. WIFFEN, “Radiation Effects in Refractory Alloys,” AIP Conf. Proc., 699, 733 (2004); https://doi.org/10.1063/1.1649637.
  • S. J. ZINKLE, “Radiation-Induced Effects on Microstructure,” Comprehensive Nuclear Materials, Vol. 1, Chap. 1.03, p. 65, R. KONINGS, Ed., Elsevier Science, United Kingdom (2012).
  • R. E. GOLD and D. L. HARROD, “Refractory Metal Alloys for Fusion Reactor Applications,” J. Nucl. Mater., 85–86, 805 (1979); https://doi.org/10.1016/0022-3115(79)90359-3.
  • D. C. GOLDBERG, G. DICKER, and S. A. WORCESTER, “Niobium and Niobium Alloys in Nuclear Power,” Nucl. Eng. Des., 22, 1, 124 (1972); https://doi.org/10.1016/0029-5493(72)90065-9.
  • S. J. ZINKLE and J. T. BUSBY, “Structural Materials for Fission & Fusion Energy,” Mater. Today, 12, 11, 12 (2009); https://doi.org/10.1016/S1369-7021(09)70294-9.
  • K. L. MURTY and I. CHARIT, “Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities,” J. Nucl. Mater., 383, 1–2, 189 (2008); https://doi.org/10.1016/j.jnucmat.2008.08.044.
  • K. J. LEONARD et al., “Radiation Effects in Refractory Metals and Alloys,” Comprehensive Nuclear Materials, Vol. 4, p. 181, R. KONINGS, Ed., Elsevier Science, United Kingdom (2012).
  • R. H. TITRAN, T. J. MOORE, and T. L. GROBSTEIN, “Creep Properties of PWC-11 Base Metal and Weldments as Affected by Heat Treatment,” Proc. TMS-AIME Annual Mtg. Alternate Alloying for Environmental Resistance, New Orleans, Louisiana, March 2–6, 1986, Minerals, Metals & Materials Society–American Institute of Mining, Metallurgical, and Petroleum Engineers (1986).
  • R. H. TITRAN and M. UZ, “Effects of Thermomechanical Processing on Tensile and Long-Time Creep Behavior of Nb-1% Zr-0.1% C Sheet,” Proc. Metallurgical Society Annual Mtg., San Francisco, California, February 27–March 3, 1994.
  • A. SARKAR et al., “Hot Deformation Behavior of Nb–1Zr–0.1C Alloy in the Temperature Range 700–1700°C,” J. Nucl. Mater., 422, 1–3, 1 (2012); https://doi.org/10.1016/j.jnucmat.2011.11.064.
  • D. M. FARKAS and A. K. MUKHERJEE, “Creep Behavior and Microstructural Correlation of a Particle-Strengthened Nb–1Zr–0.1 C Alloy,” J. Mater. Res., 11, 9, 2198 (1996); https://doi.org/10.1557/JMR.1996.0279.
  • A. DUTTA et al., “Microstructural Characterisation of 160 MeV Oxygen Irradiated Niobium,” Philos. Mag., 101, 16, 1801 (2021); https://doi.org/10.1080/14786435.2021.1934585.
  • S. DEY et al., “Characterization of Ion Induced Damage as a Function of Depth in Proton Irradiated Pure Ti and Ti–6Al–4V,” J. Alloys Compd., 821, 153441 (2020); https://doi.org/10.1016/j.jallcom.2019.153441.
  • A. DUTTA et al., “Influence of Proton Irradiation on the Microstructure and Mechanical Properties of Nb-1Zr-0.1C Alloy,” J. Nucl. Mater., 557, 153221 (2021); https://doi.org/10.1016/j.jnucmat.2021.153221.
  • A. DUTTA et al., “Microstructural Characterisation of Proton Irradiated Niobium Using X-Ray Diffraction Technique,” Philos. Mag., 98, 12, 1031 (2018); https://doi.org/10.1080/14786435.2018.1425555.
  • G. S. WAS, Fundamentals of Radiation Materials Science, 1st ed., Springer-Verlag, Berlin (2007).
  • P. L. ANDRESEN and R. JONES, Stress Corrosion Cracking—Material Performance and Evaluation, p. 181, R. H. JONES, Ed., ASM International, Materials Park, Ohio (1992).
  • F. P. FORD et al., Proc. 4th Int. Symp. Environmental Degradation of Materials in Nuclear Power Systems: Water Reactors, NACE, Houston, Texas, 4–26 (1990).
  • G. S. WAS and P. L. ANDRESEN, “Irradiation-Assisted Stress-Corrosion Cracking in Austenitic Alloys,” Journal of The Minerals, Metals & Materials Society, 44, 4, 8 (1992); https://doi.org/10.1007/BF03222812.
  • R. JONES, B. R. LEONARD, and A. JOHNSON, “Assessment of Titanium Alloys for Fusion Reactor First-Wall and Blanket Applications. Final Report” (1980).
  • R. KRAUSE-REHBERG and H. S. LEIPNER, Positron Annihilation in Semiconductors: Defect Studies, Vol. 127, Springer Science & Business Media (1999).
  • M. TOPPING et al., “The Effect of Irradiation Temperature on Damage Structures in Proton-Irradiated Zirconium Alloys,” J. Nucl. Mater., 514, 358 (2019); https://doi.org/10.1016/j.jnucmat.2018.12.006.
  • U. KANNAN, “Perspectives on Nuclear Data for Advanced Reactor Design and Analysis,” Life Cycle Reliab. Saf. Eng., 9, 135 (2020).
  • G. K. WILLIAMSON and W. H. HALL, “X-Ray Line Broadening from Filed Aluminium and Wolfram,” Acta Metall., 1, 1, 22 (1953); https://doi.org/10.1016/0001-6160(53)90006-6.
  • D. BALZAR and H. LEDBETTER, “Voigt-Function Modeling in Fourier Analysis of Size- and Strain-Broadened X-Ray Diffraction Peaks,” J. Appl. Cryst., 26, 1, 97 (1993); https://doi.org/10.1107/S0021889892008987.
  • L. LUTTEROTTI, “Total Pattern Fitting for the Combined Size-Strain-Stress-Texture Determination in Thin Film Diffraction,” Nucl. Instrum. Methods Phys. Res. Sect. B, 268, 3–4, 334 (2010); https://doi.org/10.1016/j.nimb.2009.09.053.
  • G. RIBÁRIK, “Modeling of Diffraction Patterns Based on Microstructural Properties,” Eötvös Loránd University (2008).
  • J. F. ZIEGLER, M. D. ZIEGLER, and J. P. BIERSACK, “SRIM—The Stopping and Range of Ions in Matter (2010),” Nucl. Instrum. Methods Phys. Res. Sect. B, 268, 11–12, 1818 (2010); https://doi.org/10.1016/j.nimb.2010.02.091.
  • R. E. STOLLER et al., “On the Use of SRIM for Computing Radiation Damage Exposure,” Nucl. Instrum. Methods Phys. Res. Sect. B, 310, 75 (Jan. 2013); https://doi.org/10.1016/j.nimb.2013.05.008.
  • A. DUTTA et al., “An Approach in the Analysis of Microstructure of Proton Irradiated T91 Through XRDLPA Using Synchrotron and Laboratory Source,” J. Nucl. Mater., 514, 161 (2019); https://doi.org/10.1016/j.jnucmat.2018.11.038.
  • A. DUTTA et al., “Effect of Ar9+ Irradiation on Zr-1Nb-1Sn-0.1Fe Alloy Characterized by Grazing Incidence X-Ray Diffraction Technique,” Radiat. Phys. Chem., 144, 125 (2018); https://doi.org/10.1016/j.radphyschem.2017.11.016.
  • G. M. PHARR and W. C. OLIVER, “Measurement of Thin Film Mechanical Properties Using Nanoindentation,” MRS Bull., 17, 7, 28 (1992); https://doi.org/10.1557/S0883769400041634.
  • J. CONLIN et al., “NJOY21: Next Generation Nuclear Data Processing Capabilities,” EPJ Web Conf., 146, 9040 (2017); https://doi.org/10.1051/epjconf/201714609040.
  • M. HERMAN and CROSS SECTIONS EVALUATION WORKING GROUP, “ENDF-6 Formats Manual Data Formats and Procedures for the Evaluated Nuclear Data File ENDF/B-VI and ENDF/B-VII,” Brookhaven National Laboratory (2009).
  • L. LUTTEROTTI and P. SCARDI, “Simultaneous Structure and Size-Strain Refinement by the Rietveld Method,” J. Appl. Crystallogr., 23, 4, 246 (1990); https://doi.org/10.1107/S0021889890002382.
  • G. K. WILLIAMSON and R. E. SMALLMAN, “Dislocation Densities in Some Annealed and Cold-Worked Metals from Measurements on the X-Ray Debye-Scherrer Spectrum,” Philos. Mag., 1, 1, 34 (1956); https://doi.org/10.1080/14786435608238074.
  • T. UNGÁR et al., “The Contrast Factors of Dislocations in Cubic Crystals: The Dislocation Model of Strain Anisotropy in Practice,” J. Appl. Crystallogr., 32, 5, 992 (1999); https://doi.org/10.1107/S0021889899009334.
  • P. BUJARD et al., “Elastic Constants in Nb-Mo Alloys from Zero Temperature to the Melting Point: Experiment and Theory,” J. Phys. F Met. Phys., 11, 4, 775 (1981); https://doi.org/10.1088/0305-4608/11/4/011.
  • G. RIBÁRIK and T. UNGÁR, “Characterization of the Microstructure in Random and Textured Polycrystals and Single Crystals by Diffraction Line Profile Analysis,” Mater. Sci. Eng. A, 528, 1, 112 (2010); https://doi.org/10.1016/j.msea.2010.08.059.
  • C. D. HARDIE and S. G. ROBERTS, “Nanoindentation of Model Fe–Cr Alloys with Self-Ion Irradiation,” J. Nucl. Mater., 433, 1–3, 174 (2013); https://doi.org/10.1016/j.jnucmat.2012.09.003.
  • M. A. KRIVOGLAZ, Theory of X-Ray and Thermal Neutron Scattering by Real Crystals, Springer (1969).
  • N. IGATA, K. MIYAHARA, and K. HAKOMORI, “Radiation Anneal Hardening of Neutron Irradiated Niobium,” J. Nucl. Sci. Technol., 16, 1, 73 (1979); https://doi.org/10.1080/18811248.1979.9730872.
  • S. M. OHR, R. P. TUCKER, and M. S. WECHSLER, “Radiation-Anneal Hardening in Niobium—An Effect of Post-Irradiation Annealing on the Yield Stress,” Phys. Status Solidi, 2, 3, 559 (1970); https://doi.org/10.1002/pssa.19700020318.
  • E. J. DELGROSSO, C. E. CARLSON, and J. J. KAMINSKY, “Development of Niobium-Zirconium-Carbon Alloys,” J. Less Common Met., 12, 3, 173 (1967); https://doi.org/10.1016/0022-5088(67)90114-2.
  • G. E. DIETER, Mechanical Metallurgy, 3rd ed., McGraw-Hil Book Company, New York (1976).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.