3,059
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Radiation Protection at Petawatt Laser-Driven Accelerator Facilities: The ELI Beamlines Case

ORCID Icon, , , , , , , & show all
Pages 245-263 | Received 15 Dec 2022, Accepted 08 Mar 2023, Published online: 27 Apr 2023

References

  • S. BACKUS et al., “High Power Ultrafast Lasers,” Rev. Sci. Instrum., 69, 3, 1207 (1998); https://doi.org/10.1063/1.1148795.
  • “International Committee for Ultra-High Intensity Lasers,”; https://www.icuil.org ( current as of Dec. 12, 2022).
  • C. DANSON et al., “Petawatt and Exawatt Class Lasers Worldwide,” High Power Laser Sci. Eng., 7, e54 (2019); https://doi.org/10.1017/hpl.2019.36.
  • G. KORN et al., ELI –Extreme Light Infrastructure WHITEBOOK; Science and Technology with Ultra-Intense Lasers, THOSS Media GmbH, Berlin, Germany, (2011); https://eli-laser.eu/media/1019/eli-whitebook.pdf.
  • W. LU et al., “Generating Multi-GeV Electron Bunches Using Single Stage Laser Wakefield Acceleration in a 3D Nonlinear Regime,” Phys. Rev. Spec. Top. Accel. Beams, 10, 6, 061301 (2007); https://link.aps.org/doi/10.1103/PhysRevSTAB.10.061301.
  • W. P. LEEMANS et al., “Progress on Laser Plasma Accelerator Development Using Transversely and Longitudinally Shaped Plasmas,” C.R. Phys., 10, 2, 130 (2009); https://doi.org/10.1016/j.crhy.2009.05.001.
  • M. ALLEN et al., “Proton Spectra from Ultraintense Laser–Plasma Interaction with Thin Foils: Experiments, Theory, and Simulation,” Phys. Plasmas, 10, 3283 (2003); https://doi.org/10.1063/1.1592154.
  • T. COWAN et al., “Theoretical Understanding of Record Proton Energies from Laser Acceleration with Cone Targets and Future Prospects,” Proc. 2010 Advanced Accelerator Concepts Workshop, Annapolis, Maryland, June 13–19, 2010.
  • “Council Regulation (EC) No 723/2009 of 25 June 2009 on the Community Legal Framework for a European Research Infrastructure Consortium (ERIC),” OJ L 206, p. 1, The Council of the European Union (Aug. 8, 2009).
  • S. KÜHN et al., “The ELI-ALPS Facility: The Next Generation of Attosecond Sources,” J. Phys. B: At. Mol. Opt. Phys., 50, 132002 (2017); https://doi.org/10.1088/1361-6455/aa6ee8.
  • S. GALES et al., “The Extreme Light Infrastructure-Nuclear Physics (ELI-NP) Facility: New Horizons in Physics with 10 PW Ultra-Intense Lasers and 20 MeV Brilliant Gamma Beams,” Rep. Prog. Phys., 80, 094301 (2018); https://doi.org/10.1088/1361-6633/aacfe8.
  • B. RUS et al., “Outline of the ELI-Beamlines Facility,” Proc. SPIE 8080, Prague, Czech Republic, June 9, 2011; https://doi.org/10.1117/12.890392.
  • “ ELI, the Extreme Light Infrastructure ERIC,” ELI Beamlines Research Programs; https://www.eli-beams.eu/about/projects/completed-projects/eli/research-programs/ ( current as Feb. 23, 2023).
  • R. ANTIPENKOV et al., “The Construction of Allegra Kilohertz Femtosecond Laser System at ELI-Beamlines,” Proc. SPIE 11034, Prague, Czech Republic, April 26, 2019; https://doi.org/10.1117/12.2524436.
  • J. T. GREEN, R. ANTIPENKOV, and P. BAKULE, “L2-DUHA 100 TW High Repetition Rate Laser System at ELI-Beamlines Key Design Considerations,” Reza Kenkyu, 49, 2, 106 (2021).
  • E. SISTRUNK et al., “All Diode-Pumped, High-Repetition-Rate Advanced Petawatt Laser System (HAPLS),” Proc. Conf. on Lasers and Electro-Optics, p. 1, San Jose, California, May 14–16, 2017 (2017); https://doi.org/10.1364/CLEO_SI.2017.STh1L.2.
  • F. BATYSTA et al., “Spectral Pulse Shaping of a 5 Hz, Multi-Joule, Broadband Optical Parametric Chirped Pulse Amplification Frontend for a 10 PW Laser System,” Opt. Lett., 43, 16, 3866 (2018); https://doi.org/10.1364/OL.43.003866.
  • O. HORT et al., “High-Flux Source of Coherent XUV Pulses for User Applications,” Opt. Express, 27, 6, 8871 (2019); https://doi.org/10.1364/OE.27.008871.
  • J. NEJDL et al.,” Progress on Laser-Driven X-ray Sources at ELI Beamlines,” Proc. SPIE 11111, San Diego, California, September 9, 2019; https://doi.org/10.1117/12.2532702.
  • U. CHAULAGAIN et al., “ELI Gammatron Beamline: A Dawn of Ultrafast Hard X-ray,” Sci. Photonics, 9, 11, 853 (2022); https://doi.org/10.3390/photonics9110853.
  • A. MOLODOZHENTSEV et al., “LWFA-Driven Free Electron Laser for ELI-Beamlines,” Proc. 60th ICFA Advanced Beam Dynamics Workshop (FLS’18), p. 62, Shanghai, China, March 5–9, 2018 (2008); https://doi.org/10.18429/JACoW-FLS2018-TUA2WC02.
  • G. GRITTANI et al., “ELI-ELBA: Fundamental Science Investigations with High Power Lasers at ELI-Beamlines,” in OSA High-Brightness Sources and Light-Driven Interactions Congress 2020 (EUVXRAY, HILAS, MICS), L. ASSOUFID et al., Eds., paper JM3A.20, OSA Technical Digest Optica Publishing Group (2020); https://doi.org/10.1364/EUVXRAY.2020.JM3A.20.
  • C. LAZZARINI et al., “50 MeV Electron Beams Accelerated by a Terawatt Scalable kHz Laser,” arXiv:2302.11415 [physics.plasm-ph] (2023); https://doi.org/10.48550/arXiv.2302.11415.
  • M. TRYUS et al., “TERESA Target Area at ELI Beamlines,” Quantum Beam Sci., 4, 4, 37 (2020); https://doi.org/10.3390/qubs4040037.
  • D. MARGARONE et al., “ELIMAIA: A Laser-Driven Ion Accelerator for Multidisciplinary Applications,” Quantum Beam Sci., 2, 2, 8 (2018); https://doi.org/10.3390/qubs2020008.
  • S. WEBER et al., “P3: An Installation for High-Energy Density Plasma Physics and Ultra-High Intensity Laser–Matter Interaction at ELI-Beamlines,” Matter Radiat. Extremes, 2, 4, 149 (2017); https://doi.org/10.1016/j.mre.2017.03.003.
  • “ Atomic Law,” Státní úřad pro jadernou bezpečnost; https://www.sujb.cz/legislativa/atomove-pravo ( current as of Dec. 13, 2022) (in Czech).
  • “The 2007 Recommendations of the International Commission on Radiological Protection,” ICRP Publication 103. Ann. ICRP 37(2-4), International Commission on Radiological Protection (2007).
  • “Council Directive 2013/59/Euratom of 5 December 2013 Laying Down Basic Safety Standards for Protection Against the Dangers Arising from Exposure to Ionising Radiation, and Repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom,” OJ L 013 17.1.2014, p. 1, European Atomic Energy Community (2013).
  • “Recommendations of the ICRP,” ICRP Publication 26, Ann. ICRP 1(3): 1, International Commission on Radiological Protection (1977).
  • ISO 14644-1:2015. Cleanrooms and Associated Controlled Environments—Part 1: Classification of Air Cleanliness by Particle Concentration,” International Organization for Standardization (2015); https://www.iso.org/standard/53394.html.
  • C. AHDIDA et al., “Capabilities of the FLUKA Multi-Purpose Code,” Front. Phys., 9, 788253 (2022); https://doi.org/10.3389/fphy.2021.788253.
  • G. BATTISTONI et al., “Overview of the FLUKA Code,” Ann. Nucl. Energy, 82, 10, 10 (2015); https://doi.org/10.1016/j.anucene.2014.11.007.
  • F. BORNE et al., “Radiation Protection for an Ultra-High Intensity Laser,” Radiat. Prot. Dosim., 102, 1, 61 (2002); https://doi.org/10.1093/oxfordjournals.rpd.a006074.
  • P. L. PRITCHETT, “Particle-in-Cell Simulation of Plasmas—A Tutorial,” Space Plasma Simulation. Lecture Notes in Physics, Vol. 615, J. BÜCHNER, M. SCHOLER, and C. T. DUM, Eds., Springer (2003); https://doi.org/10.1007/3-540-36530-3_1.
  • W. BANG et al., “Review of Laser-Plasma Physics Research and Applications in Korea,” J. Korean Phys. Soc., 80, 698 (2022); https://doi.org/10.1007/s40042-021-00391-w.
  • G. MILOSHEVSKY, “Ultrafast Laser Matter Interactions: Modelling Approaches, Challenges, and Prospects,” Modell. Simul. Mater. Sci. Eng., 30, 083001 (2022); https://doi.org/10.1088/1361-651X/ac8abc.
  • F. CONSOLI et al., “Laser Produced Electromagnetic Pulses: Generation, Detection and Mitigation,” High Power Laser Sci. Eng., 8, e22, 59 (2020); https://doi.org/10.1017/hpl.2020.13.
  • K. NELISSEN et al., “Characterisation and Modelling of Ultrashort Laser-Driven Electromagnetic Pulses,” Sci. Rep., 10, 3108 (2020); https://doi.org/10.1038/s41598-020-59882-8.
  • V. SHURENKOV and V. PERSHENKOV, “Electromagnetic Pulse Effects and Damage Mechanism on the Semiconductor Electronics,” Facta Univ. Ser.: Elec. Energ., 29, 621 (2016); https://doi.org/10.2298/FUEE1604621S.
  • ISO/TS 18090-1: 08-2015.Radiological Protection - Characteristics of Reference Pulsed Radiation—Part 1: Photon Radiation,” International Organization for Standardization (2015); https://www.iso.org/standard/61352.html.
  • T. WERNER et al., “Dose Rate Measurements in Pulsed Radiation Fields by Means of an Organic Scintillator,” Proc. EPJ Web. Conf., 253, 09002 (2021); https://doi.org/10.1051/epjconf/202125309002.
  • U. ANKERHOLD et al., “Deficiencies of Active Electronic Radiation Protection Dosemeters in Pulsed Fields,” Radiat. Prot. Dosim., 135, 3, 149 (2009); https://doi.org/10.1093/rpd/ncp099.
  • A. SCHÜLLER et al., “The European Joint Research Project UHDpulse—Metrology for Advanced Radiotherapy Using Particle Beams with Ultra-High Pulse Dose Rates,” Phys. Med., 80, 134 (2020); https://doi.org/10.1016/j.ejmp.2020.09.020.
  • G. ZORLONI et al., “Intercomparison of Personal and Ambient Dosimeters in Extremely High-Dose-Rate Pulsed Photon Fields,” Radiat. Phys. Chem., 172, 108764 (2020); https://doi.org/10.1016/j.radphyschem.2020.108764.
  • J. T. WALLMARK and S. M. MARCUS, “Minimum Size and Maximum Packing Density of Nonredundant Semiconductor Devices,” Proc. IRE, 50, 3, 286 (Mar. 1962); https://doi.org/10.1109/JRPROC.1962.288321.
  • I. EFTHYMIOPOULOS et al., “First Year of Physics at CNGS,” Proc. Particle Accelerator Conf. 2009, p. TU6PFP079, Vancouver, Canada, May 4–8, 2009 (2009).
  • M. BAGATIN and S. GERARDIN, Ionizing Radiation Effects in Electronics: From Memories to Imagers, CRC Press Taylor & Francis Group (2018).
  • R. GARCIA ALIA et al., “Single Event Effects in High-Energy Accelerators,” Semicond. Sci. Technol., 32, 034003 (2017); https://doi.org/10.1088/1361-6641/aa5695.
  • S. UZNANSKI et al., “Qualification of Electronics Components for a Radiation Environment: When Standards Do Not Exist,” Proc. RADECS Short Course, Part 4B, p. 1, Geneva, Switzerland, October 2017; https://doi.org/10.23919/MIXDES.2018.8436726.
  • “RADiation facility Network for the EXploration of effects for indusTry and research,” RADNEXT; https://radnext.web.cern.ch ( current as of Mar. 6, 2023).
  • FLUKA Manual, “5.1 Particles Codes, ‘List of Particles Transported by FLUKA,’” CERN; https://flukafiles.web.cern.ch/manual/chapters/particle_and_material_codes/particles_codes.html ( current as of Mar. 6, 2023).
  • V. VLACHOUDIS, “FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA,” Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009).
  • V. OLŠOVCOVÁ et al., “Bulk Shielding for Laser Research Centre ELI Beamlines,” Prog. Nucl. Sci. Technol., 4, 247, 247 (2014); https://doi.org/10.15669/pnst.4.247.
  • “Jabroc ‘N’ Densified Wood Laminate,” DEHOMIT; http://www.dehonit.com.cn/english/zuihou.html ( current as of Mar. 3, 2023).
  • R. BARMAN et al., “Investigation of Radiation Shielding Characteristic Features of Different Wood Species,” Radiat. Phys. Chem., 192, 109927 (2022); https://doi.org/10.1016/j.radphyschem.2021.109927.
  • A. FASSO et al., “An Activation Database for Materials Used at High Intensity Laser Acceleration Facilities,” Proc. Shielding Aspects of Accelerator, Target and Irradiation Facilities (SATIF-13), p. 422, October 10–12, 2016, Dresden, Germany, NEA/NSC/R2(2018), Organisation for Economic Co-operation and Development (2018).
  • IEC 61580:2010. Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems,” International Eletrotechnical Commission (2010).
  • “Welcome,” Rockwell Automation; https://www.rockwellautomation.com ( current as of Dec. 13, 2022).
  • “Your Lifecycle Partner Providing Innovative Solutions Across Engineering, Services and Products—Securing Your Performance in Heavily Regulated Environments,” Nuvia; https://www.nuvia.com ( current as of Dec. 13, 2022).
  • “Detection and Measurement of Radiation,” VF Nuclear; https://www.vfnuclear.com ( current as of Dec. 13, 2022).
  • “Nuclear & Environmental,” Canberra Packard; https://www.cpce.net ( current as of Dec. 13, 2022).
  • A. KLETT et al., “A Dose Meter for Pulsed Neutron Fields,” Radiat. Meas., 45, 10, 1242 (2010); https://doi.org/10.1016/j.radmeas.2010.06.008.
  • A. LEUSCHNER, “Dose Rate Measurements Around the Electron Extraction at FLASH,” Proc. 8th Int. Workshop on Radiation Safety at Synchrotron Radiation Sources (RadSynch15), Hamburg,DESY, Germany, June 3–5, 2015.
  • “Process Control, Bioanalytics, Radiation Protection,” Berthold Technologies; https://www.berthold.com ( current as of Dec. 13, 2022).
  • “FHT 192 Ionization Chambers,” ThermoFisher;https://www.thermofisher.com/order/catalog/product/425354050?SID=srch-srp-425354050 ( current as of Dec. 13, 2022).
  • M. T. LUCCHINI et al., “Radiation Tolerance of LuAG:Ce and YAG:Ce Crystals Under High Levels of Gamma- and Proton-Irradiation,” IEEE Trans. Nucl. Sci., 63, 2, 586 (Apr. 2016); https://doi.org/10.1109/TNS.2015.2493347.
  • “VF Nuclear Gamma Detectors,” VF Nuclear; https://www.nutronic.se/mdg-0x-series-dose-rate-meters ( current as of Mar. 24, 2023).
  • “Thermofisher Electronic Personal Dosimeter TruDose,” ThermoFisher; https://www.thermofisher.com/order/catalog/product/EPDTRUDOSE ( current as of Dec. 13, 2022).
  • “Český Metrologický Institut,”; https://www.cmi.cz ( current as of December 13, 2022) (in Czech).
  • E. G. YUKIHARA et al., “Luminescence Dosimetry,” Nat. Rev. Meth. Primers, 2, 26 (2022); https://doi.org/10.1038/s43586-022-00102-0.
  • E. BULUR and H. Y. GÖKSU, “OSL from BeO Ceramics: New Observations from an Old Material,” Radiat. Meas., 29, 639 (1998); https://doi.org/10.1016/S1350-4487(98)00084-5.
  • E. G. YUKIHARA, A. B. ANDRADE, and S. ELLER, “BeO Optically Stimulated Luminescence Dosimetry Using Automated Research Readers,” Radiat. Meas., 94, 27 (2016); https://doi.org/10.1016/j.radmeas.2016.08.008.
  • “Furnaces and Dryers,” LAC, s.r.o; https://www.lac.cz/en/ ( current as of Dec. 13, 2022).
  • “Luminescence Measurement Devices,” Freiberg Instruments; https://www.lexsyg.com/tlosl-reader.html ( current as of Dec. 13, 2022).
  • “Státní ústav radiační ochrany”; https://www.suro.cz ( current as of Dec. 13, 2022) (in Czech).
  • ISO/IEC 17025:2017. General Requirements for the Competence of Testing and Calibration Laboratories,” International Organization for Standardization (2017); https://www.iso.org/standard/66912.html.
  • A. CIMMINO et al., “Characterization of OSL Dosimeters Used at the ELI-Beamlines Laser-Driven Accelerator Facility,” J. Radiol. Prot., 41, N23 (2021); https://doi.org/10.1088/1361-6498/ac14d5.