133
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Benchmark Solutions for Radiative Transfer with a Moving Mesh and Exact Uncollided Source Treatments

& ORCID Icon
Pages 2270-2300 | Received 11 Jan 2023, Accepted 03 Apr 2023, Published online: 05 Jun 2023

References

  • J. STEFAN, “Uber die beziehung zwischen der warmestrahlung und der temperatur, sitzungsberichte der mathematisch-naturwissenschaftlichen classe der kaiserlichen,” Akademie der Wissenschaften, 79, S–391 (1879).
  • R. E. MARSHAK, “Effect of Radiation on Shock Wave Behavior,” Phys. Fluids, 10, 1 (1958).
  • A. G. PETSCHEK, R. E. WILLIAMSON, and J. K. WOOTEN JR., “The Penetration of Radiation with Constant Driving Temperature,” LAMS-2421, Los Alamos Scientific Laboratory (1960).
  • W. BENNETT and R. G. MCCLARREN, “Self-Similar Solutions for High-Energy Density Radiative Transfer with Separate Ion and Electron Temperatures,” Proc. Royal Soc. A, 477, 2249, 20210119 (2021).
  • G. C. POMRANING, “The Non-Equilibrium Marshak Wave Problem,” J. Quant. Spectrosc. Radiat. Transfer, 21, 3, 249 (1979); https://doi.org/10.1016/0022-4073(79)90016-5.
  • R. G. McCLARREN, J. PAUL HOLLOWAY, and T. A. BRUNNER, “Analytic P1 Solutions for Time-Dependent, Thermal Radiative Transfer in Several Geometries,” J. Quant. Spectrosc. Radiat. Transfer, 109, 3, 389 (2008); https://doi.org/10.1016/j.jqsrt.2007.08.006.
  • B. D. GANAPOL and G. C. POMRANING, “The Non-Equilibrium Marshak Wave Problem: A Transport Theory Solution,” J. Quant. Spectrosc. Radiat. Transfer, 29, 4, 311 (1983); https://doi.org/10.1016/0022-4073(83)90049-3.
  • B. SU and G. L. OLSON, “An Analytical Benchmark for Non-Equilibrium Radiative Transfer in an Isotropically Scattering Medium,” Ann. Nucl. Energy, 240, 13, 1035 (1997); https://doi.org/10.1016/S0306-4549(96)00100-4.
  • B. SU and G. L. OLSON, “Non-Grey Benchmark Results for Two Temperature Non-Equilibrium Radiative Transfer,” J. Quant. Spectrosc. Radiat. Transfer, 620, 3, 279 (1999); https://doi.org/10.1016/S0022-4073(98)00105-8.
  • B. SU and G. L. OLSON, “Benchmark Results for the Non-Equilibrium Marshak Diffusion Problem,” J. Quant. Spectrosc. Radiat. Transfer, 56, 3, 337 (1996); https://doi.org/10.1016/0022-4073(96)84524-9.
  • R. G. MCCLARREN and J. G. WÖHLBIER, “Solutions for Ion–Electron–Radiation Coupling with Radiation and Electron Diffusion,” J. Quant. Spectrosc. Radiat. Transfer, 112, 1, 119 (2011); https://doi.org/10.1016/j.jqsrt.2010.08.015.
  • R. G. McCLARREN, “Two-Group Radiative Transfer Benchmarks for the Non-Equilibrium Diffusion Model,” J. Comput. Theor. Transport, 500, 6–7, 583 (2022); https://doi.org/10.1080/23324309.2022.2032757.
  • W. BENNETT and R. G. MCCLARREN, “Accurate Solutions to Time Dependent Transport Problems with a Moving Mesh and Exact Uncollided Source Treatments,” Ann. Nucl. Energy, 180, 109474 (2023); https://doi.org/10.1016/j.anucene.2022.109474.
  • B. D. GANAPOL et al. “Homogeneous Infinite Media Time-Dependent Analytical Benchmarks,” LA-UR-01-1854, Los Alamos National Laboratory (2001); https://www.osti.gov/biblio/975281.
  • W. BENNETT and R. G. MCCLARREN, “Benchmarks for Infinite Medium, Time Dependent Transport Problems with Isotropic Scattering,” J. Comput. Theor. Transport, 51, 4, 205 (2022); arXiv preprint arXiv:2205.15783; https://doi.org/10.1080/23324309.2022.2103151.
  • S. CHANDRASEKHAR, Radiative Transfer, Dover Publications (1960).
  • J. E. MARSDEN and A. TROMBA, Vector Calculus, pp. 1–93, W. H. Freeman (2003); https://books.google.com/books?id=LiRLJf2m_dwC.
  • N. SCHLÖMER et al., nschloe/quadpy website; https://zenodo.org/record/5541216 (2021).
  • P. VIRTANEN et al., “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nat. Methods, 17, 3, 261 (2020); https://doi.org/10.1038/s41592-019-0686-2.
  • W. BENNETT and G. M. RYAN, Moving Mesh Radiative Transfer website; https://github.com/wbennett39/moving_mesh_radiative_transfer (2022).
  • J. J. DUDERSTADT and W. R. MARTIN, Transport Theory, John Wiley and Sons (1979).
  • R. J. LEVEQUE et al., “Radiation Hydrodynamics: Numerical Aspects and Applications,” Computational Methods for Astrophysical Fluid Flow, Saas-Fee Advanced Course 27 Lecture Notes 1997, pp. 263–341, Swiss Society for Astrophysics and Astronomy (1998).
  • K. D. HUMBIRD and R. G. McCLARREN, “Adjoint-Based Sensitivity Analysis for High-Energy Density Radiative Transfer Using Flux-Limited Diffusion,” High Energy Density Phys., 22, 12 (2017); https://doi.org/10.1016/j.hedp.2016.12.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.