64
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The Maximum Entropy Principle: General Extended Hydrodynamic Approach for Dynamic High-Field Transport in Monolayer Graphene

ORCID Icon, ORCID Icon &
Pages 2509-2525 | Received 05 Jan 2023, Accepted 03 Apr 2023, Published online: 11 Jul 2023

References

  • E. T. JAYNES, “Benchmark Results for Particle Transport in a Binary Markov Statistical Medium,” Phys. Rev., 106, 4, 620 (1957); https://doi.org/10.1103/PhysRev.106.620.
  • Maximum Entropy and Bayesian Methods, J. SKILLING, Ed., Kluwer Academic Publishers (2004).
  • I. MÜLLER and T. RUGGERI, Rational Extended Thermodynamics, Springer-Verlag, New York (1998).
  • T. RUGGERI and M. SUGIYAMA, Rational Extended Thermodynamics Beyond the Monatomic Gas, Springer (2015).
  • D. JOU, G. LEBON, and J. CASAS-VAZQUEZ, Extended Irreversible Thermodynamics, Springer (2010).
  • M. TROVATO and L. REGGIANI, “Maximum Entropy Principle and Hydrodynamic Models in Statistical Mechanics,” Rivista del Nuovo Cimento, 35, 3–4, 99 (2012).
  • M. TROVATO and L. REGGIANI, “Quantum Maximum Entropy Principle for a System of Identical Particles,” Phys. Rev. E, 81, 21119 (2010); https://doi.org/10.1103/PhysRevE.81.021119.
  • M. TROVATO and L. REGGIANI, “Quantum Maximum-Entropy Principle for Closed Quantum Hydrodynamic Transport Within a Wigner Function Formalism,” Phys. Rev. E, 84, 61147 (2011); https://doi.org/10.1103/PhysRevE.84.061147.
  • M. TROVATO and L. REGGIANI, “Quantum Maximum Entropy Principle for Fractional Exclusion Statistics,” Phys. Rev. Lett., 110, 20404 (2013); https://doi.org/10.1103/PhysRevLett.110.020404.
  • M. TROVATO and P. FALSAPERLA, “Full Nonlinear Closure for a Hydrodynamic Model of Transport in Silicon,” Phys. Rev. B, 57, 8, 4456 (1998); https://doi.org/10.1103/PhysRevB.57.4456.
  • M. TROVATO and L. REGGIANI, “Maximum Entropy Principle for Hydrodynamic Transport in Semiconductor Devices,” J. Appl. Phys., 85, 8, 4050 (1999); https://doi.org/10.1063/1.370310.
  • M. TROVATO, P. FALSAPERLA, and L. REGGIANI, “Maximum Entropy Principle for Non-Parabolic Hydrodynamic Transport in Semiconductor Devices,” J. Appl. Phys., 86, 10, 5906 (1999); https://doi.org/10.1063/1.371610.
  • M. TROVATO and L. REGGIANI, “Maximum Entropy Principle Within a Total Energy Scheme: Application to Hot-Carrier Transport in Semiconductors,” Phys. Rev. B, 61, 24, 16667 (2000); https://doi.org/10.1103/PhysRevB.61.16667.
  • M. TROVATO and L. REGGIANI, “Maximum-Entropy Principle for Static and Dynamic High-Field Transport in Semiconductors,” Phys. Rev. B, 73, 245209 (2006); https://doi.org/10.1103/PhysRevB.73.245209.
  • M. TROVATO, P. FALSAPERLA, and L. REGGIANI, “Maximum-Entropy Principle for ac and dc Dynamic High-Field Transport in Monolayer Graphene,” J. Appl. Phys., 125, 174901 (2019); https://doi.org/10.1063/1.5088809.
  • M. FISCHETTI et al., “Pseudopotential-Based Studies of Electron Transport in Graphene and Graphene Nanoribbons,” J. Phys., 25, 473202 (2013).
  • M. LAZZERI et al., “Electron Transport and Hot Phonons in Carbon Nanotubes,” Phys. Rev. Lett., 95, 236802 (2005).
  • M. LAZZERI et al., “Impact of the Electron-Electron Correlation on Phonon Dispersion: Failure of LDA and GGA DFT Functionals in Graphene and Graphite,” Phys. Rev. B, 78, 81406(R) (2008); https://doi.org/10.1103/PhysRevB.78.081406.
  • K. M. BORYSENKO et al., “First-Principles Analysis of Electron-Phonon Interactions in Graphene,” Phys. Rev. B, 81, 121412(R) (2010); https://doi.org/10.1103/PhysRevB.81.121412.
  • H. J. SHIN et al., “Unsaturated Drift Velocity of Monolayer Graphene,” Nano Lett., 18, 33, 1575 (2018); https://doi.org/10.1021/acs.nanolett.7b03566.
  • W.-H. MAO, M.-Y. SHANG, and J.-T. LU, “Hot and Cold Phonons in Electrically Biased Graphene,” Phys. Rev. B, 106, 12, 125406 (2022); https://doi.org/10.1103/PhysRevB.106.125406.
  • R. RENGEL and M. MARTIN, “Diffusion Coefficient, Correlation Function, and Power Spectral Density of Velocity Fluctuations in Monolayer Graphene,” J. Appl. Phys., 114, 143702 (2013); https://doi.org/10.1063/1.4824182.
  • R. RENGEL et al., “Noise Temperature in Graphene at High Frequencies,” Semicond. Sci. Technol., 31, 7, 075001 (2016); https://doi.org/10.1088/0268-1242/31/7/075001.
  • X. HE et al., “Investigation of Phonon Scattering on the Tunable Mechanisms of Terahertz Graphene Metamaterials,” Nanomaterials, 10, 39, 1 (2020).
  • R. RENGEL, E. PASCUAL, and M. MARTIN, “Influence of the Substrate on the Diffusion Coefficient and the Momentum Relaxation in Graphene: The Role of Surface Polar Phonons,” Appl. Phys. Lett., 104, 233107 (2014); https://doi.org/10.1063/1.4882238.
  • X. LI et al., “Surface Polar Phonon Dominated Electron Transport in Graphene,” Appl. Phys. Lett., 97, 232105 (2010); https://doi.org/10.1063/1.3525606.
  • J. IGLESIAS et al., “Substrate Influence on the Early Relaxation Stages of Photoexcited Carriers in Monolayer Graphene,” Appl. Sur. Sci., 424, 52 (2017); https://doi.org/10.1016/j.apsusc.2017.02.114.
  • E. PASCUAL et al., “Harmonic Extraction in Graphene: Monte Carlo Analysis of the Substrate Influence,” Materials, 14, 5108 (2021); https://doi.org/10.3390/ma14175108.
  • E. H. HWANG, S. ADAM, and S. D. SARMA, “Charged-Impurity Scattering in Graphene,” Phys. Rev. Lett., 98, 186806 (2007); https://doi.org/10.1103/PhysRevLett.98.186806.
  • E. H. HWANG and S. DAS SARMA, “Screening-Induced Temperature-Dependent Transport in Two-Dimensional Graphene,” Phys. Rev. B, 79, 165404 (2009); https://doi.org/10.1103/PhysRevB.79.165404.
  • R. RENGEL, C. COUSO, and M. MARTIN, “A Monte Carlo Study of Electron Transport in Suspended Monolayer Graphene,” Proc. Spanish Conf. Electron Devices (CDE 2013), Valladolid, Spain, February 12–14, 2013, Institute of Electrical and Electronics Engineers (2013).
  • E. H. HWANG and S. D. SARMA, “Acoustic Phonon Scattering Limited Carrier Mobility in Two-Dimensional Extrinsic Graphene,” Phys. Rev. B, 77, 115449 (2008); https://doi.org/10.1103/PhysRevB.77.115449.
  • S. SARMA, S. ADAM, and E. ROSSI, “Electronic Transport in Two-Dimensional Graphene,” Rev. Mod. Phys., 83, 2, 407 (2011); https://doi.org/10.1103/RevModPhys.83.407.
  • R. S. SHISHIR and D. K. FERRY, “Intrinsic Mobility in Graphene,” J. Phys., 21, 232204 (2009).
  • R. S. SHISHIR and D. K. FERRY, “Velocity Saturation in Intrinsic Graphene,” J. Phys., 21, 344201 (2009).
  • X. LI et al., “Electron Transport Properties of Bilayer Graphene,” Phys. Rev. B, 84, 195453 (2011); https://doi.org/10.1103/PhysRevB.84.195453.
  • J. CHEN et al., “Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2,” Nat. Nanotechnol., 3, 4, 206 (2008); https://doi.org/10.1038/nnano.2008.58.
  • K. I. BOLOTIN et al., “Temperature- Dependent Transport in Suspended Graphene,” Phys. Rev. Lett., 101, 9, 096802 (2008); https://doi.org/10.1103/PhysRevLett.101.096802.
  • W. ZHU et al., “Carrier Scattering, Mobilities, and Electrostatic Potential in Monolayer, Bilayer, and Trilayer Graphene,” Phys. Rev. B, 80, 235402 (2009); https://doi.org/10.1103/PhysRevB.80.235402.
  • V. E. DORGAN, M.-H. BAE, and E. POP, “Mobility and Saturation Velocity in Graphene on SiO2,” Appl. Phys. Lett., 97, 82112 (2010); https://doi.org/10.1063/1.3483130.
  • R. RENGEL et al., “A Balance Equations Approach for the Study of the Dynamic Response and Electronic Noise in Graphene,” J. Appl. Phys., 121, 185705 (2017); https://doi.org/10.1063/1.4983190.
  • R. RENGEL et al., “A Combined Monte Carlo-Balance Equations Investigation of the High Frequency Response of Graphene,” Proc. 11th Spanish Conf. Electron Devices (CDE 2017), Barcelona, Spain, February 8–10, 2017, Institute of Electrical and Electronics Engineers (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.