779
Views
0
CrossRef citations to date
0
Altmetric
SPECIAL SECTION FEATURING PAPERS FROM THE YOUNG MOLTEN SALT REACTOR CONFERENCE

Numerical Modeling and Simulation of Melting Phenomena for Freeze Valve Analysis in Molten Salt Reactors

, , & ORCID Icon
Pages 3058-3081 | Received 31 Jan 2023, Accepted 08 Jun 2023, Published online: 08 Aug 2023

References

  • “Generation IV International Forum 2016 Annual Report,” Generation IV International Forum (2016).
  • D. GERARDIN et al., “Design Evolutions of Molten Salt Fast Reactor,” presented at the Int. Conf. on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development, June 26. Yekaterinburg, Russia (2017).
  • B. M. CHISHOLM, S. L. KRAHN, and A. G. SOWDER, “A Unique Molten Salt Reactor Feature—The Freeze Valve System: Design, Operating Experience, and Reliability,” Nucl. Eng. Des., 368, 110803 (2020); https://doi.org/10.1016/j.nucengdes.2020.110803.
  • M. TIBERGA et al., “Preliminary Investigation on the Melting Behavior of a Freeze-Valve for the Molten Salt Fast Reactor,” Ann. Nucl. Energy, 132, 544 (2019); https://doi.org/10.1016/j.anucene.2019.06.039.
  • V. VOULGAROPOULOS et al., “Transient Freezing of Water Between Two Parallel Plates: A Combined Experimental and Modelling Study,” Int. J. Heat Mass Trans., 153, 119596 (2020); https://doi.org/10.1016/j.ijheatmasstransfer.2020.119596.
  • G. CARTLAND GLOVER, “On the Numerical Modelling of Frozen Walls in a Molten Salt Fast Reactor,” Nucl. Eng. Des., 365, 110290 (2019); https://doi.org/10.1016/j.nucengdes.2019.110290.
  • S. C. GUPTA, The Classical Stefan Problem: Basic Concepts, Modelling, and Analysis, No. V. 45 in North-Holland Series in Applied Mathematics and Mechanics, Elsevier (2003).
  • V. ALEXIADES and A. D. SOLOMON, Mathematical Modelling of Melting and Freezing Processes, Hemisphere Publishing Corporation (1993).
  • A. ONUKI, Phase Transition Dynamics, Cambridge University Press (2002).
  • M. TANO RETAMALES, “Development of Multi-Physical Multi-Scale Models for Molten Salts at High Temperature and Their Experimental Validation,” PhD Thesis, University of Grenoble Alpes, LPSC - Laboratoire de Physique Subatomique et de Cosmologie (2018).
  • J. H. NAZZI EHMS et al., “Fixed Grid Numerical Models for Solidification and Melting of Phase Change Materials (PCMs),” Appl. Sci., 9, 20, 4334 (2019); https://doi.org/10.3390/app9204334.
  • C. R. SWAMINATHAN and V. R. VOLLER, “A General Enthalpy Method for Modeling Solidification Processes,” Metall. Trans. B, 23, 5, 651 (1992); https://doi.org/10.1007/BF02649725.
  • Q. LI et al., “Preliminary Study of the Use of Freeze-Valves for a Passive Shutdown System in Molten Salt Reactors,” presented at the ASME/NRC 2014 12th Valves, Pumps, and Inservice Testing Symp., Rockville, Maryland, American Society of Mechanical Engineers (2014).
  • I. K. AJI et al., “An Experimental Study on Freeze Valve Performance in a Molten Salt,” Volume 9: Student Paper Competition, American Society of Mechanical Engineers, London, England (2018).
  • V. GIRAUD et al., “Development of a Cold Plug Valve with Fluoride Salt,” EPJ Nucl. Sci. Technol., 5, 9, 9 (2019); https://doi.org/10.1051/epjn/2019005.
  • E. CERVI et al., “Development of a Multiphysics Model for the Study of Fuel Compressibility Effects in the Molten Salt Fast Reactor,” Chem. Eng. Sci., 193, 379 (2018); https://doi.org/10.1016/j.ces.2018.09.025.
  • E. CERVI et al., “Multiphysics Analysis of the MSFR Helium Bubbling System: A Comparison Between Neutron Diffusion, SP3 Neutron Transport and Monte Carlo Approaches,” Ann. Nucl. Energy, 132, 227 (2019); https://doi.org/10.1016/j.anucene.2019.04.029.
  • E. CERVI et al., “Development of an SP3 Neutron Transport Solver for the Analysis of the Molten Salt Fast Reactor,” Nucl. Eng. Des., 346, 209 (2019); https://doi.org/10.1016/j.nucengdes.2019.03.001.
  • F. CARUGGI et al., “Multiphysics Modelling of Gaseous Fission Products in the Molten Salt Fast Reactor,” Nucl. Eng. Des., 392, 111762 (2022); https://doi.org/10.1016/j.nucengdes.2022.111762.
  • C. BONACINA et al., “Numerical Solution of Phase-Change Problems,” Int. J. Heat Mass Trans., 16, 10, 1825 (1973); https://doi.org/10.1016/0017-9310(73)90202-0.
  • A. D. BRENT, V. R. ROLLER, and K. J. REID, “Enthalpy-Porosity Technique for Modelling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal,” Numer. Heat Transfer, 13, 3, 297 (1988); https://doi.org/10.1080/10407788808913615.
  • W. BENNON and F. INCROPERA, “A Continuum Model for Momentum, Heat and Species Transport in Binary Solid-Liquid Phase Change Systems—I. and II,” Int. J. Heat Mass Trans., 30, 10, 2161 (1987); https://doi.org/10.1016/0017-9310(87)90094-9.
  • R. VISWANATH and Y. JALURIA, “A Comparison of Different Solution Methodologies for Melting and Solidification Problems in Enclosures,” Numer. Heat Transfer Part B, 24, 1, 77 (1993); https://doi.org/10.1080/10407799308955883.
  • V. R. VOLLER and C. R. SWAMINATHAN, “General Source-Based Method for Solidification Phase Change,” Numer. Heat Transfer Part B, 19, 2, 175 (1991); https://doi.org/10.1080/10407799108944962.
  • N. HANNOUN, V. ALEXIADES, and T. Z. MAI, “A Reference Solution for Phase Change with Convection,” Int. J. Numer. Method, 48, 11, 1283 (2005); https://doi.org/10.1002/fld.979.
  • M. TORABI RAD, Solidification Melting Source: A Built-in fvOption in OpenFOAM® for Simulating Isothermal Solidification, Springer International Publishing (2019); https://doi.org/10.1007/978-3-319-60846-4_32.
  • J. STEFAN, “Über einige Probleme der Theorie der Wärmeleitung,” Sitzungber. Wien, Akad. Mat. Natur, 98, 473 (1889).