221
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of Uncertainty Reduction on Lead-Bismuth Coolant in Accelerator-Driven System Using Sample Reactivity Experiments

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1215-1234 | Received 09 May 2023, Accepted 05 Aug 2023, Published online: 04 Oct 2023

References

  • T. SUGAWARA, R. KATANO, and K. TSUJIMOTO, “Impact of Impurity in Transmutation Cycle on Neutronics Design of Revised Accelerator-Driven System,” Ann. Nucl. Energy, 111, 449 (2018); http://dx.doi.org/10.1016/j.anucene.2017.09.017.
  • H. IWAMOTO et al., “Sensitivity and Uncertainty Analysis for a Minor-Actinide Transmuter with JENDL-4.0,” Nucl. Data Sheets, 118, 519 (2014); http://dx.doi.org/10.1016/j.nds.2014.04.123.
  • P. ROMOJARO et al., “On the Importance of Target Accuracy Assessments and Data Assimilation for the Co-Development of Nuclear Data and Fast Reactors: MYRRHA and ESFR,” Ann. Nucl. Energy, 161, 108416 (2021); http://dx.doi.org/10.1016/j.anucene.2021.108416.
  • M. SALVATORES and R. JACQMIN, “Uncertainty and Target Accuracy Assessment for Innovative Systems Using Recent Covariance Data Evaluations,” NEA/WPEC-26, Nuclear Energy Agency Working Party on International Nuclear Data Evaluation Co-operation (2008).
  • “WPEC/SG46 Zoom Target Accuracy Requirements (TAR) Meeting,” April 14, 2021, Nuclear Energy Agency Working Party on International Nuclear Data Evaluation Co-operation.
  • M. L. WILLIAMS et al., “6.6 TSURFER: An Adjustment Code to Determine Biases and Uncertainties in Nuclear System Responses by Consolidating Differential Data and Benchmark Integral Experiments,” in “SCALE Code System,” ORNL/TM-2005/39, Version 6.2.3, p. 6–329, B. T. REARDEN and M. A. JESSEE, Eds., Oak Ridge National Laboratory (Mar. 2018).
  • B. L. BROADHEAD et al., “Sensitivity- and Uncertainty-Based Criticality Safety Validation Techniques,” Nucl. Sci. Eng., 146, 3, 340 (2004); http://dx.doi.org/10.13182/NSE03-2.
  • M. L. WILLIAMS and B. T. REARDEN, “SCALE-6 Sensitivity/Uncertainty Methods and Covariance Data,” Nucl. Data Sheets, 109, 12, 2796 (2008); http://dx.doi.org/10.1016/j.nds.2008.11.012.
  • S. M. BOWMAN, “SCALE 6: Comprehensive Nuclear Safety Analysis Code System,” Nucl. Technol., 174, 2, 126 (2011); http://dx.doi.org/10.13182/NT10-163.
  • E. FORT et al., “Improved Performances of the Fast Reactor Calculational System ERANOS-ERALIB1 Due to Improved A Priori Nuclear Data and Consideration of Additional Specific Integral Data,” Ann. Nucl. Energy, 30, 18, 1879 (2003); https://doi.org/10.1016/S0306-4549(03)00161-0.
  • A. HOEFER et al., “MOCABA: A General Monte Carlo–Bayes Procedure for Improved Predictions of Integral Functions of Nuclear Data,” Ann. Nucl. Energy, 77, 514 (2015); http://dx.doi.org/10.1016/j.anucene.2014.11.038.
  • D. ROCHMAN et al., “Monte Carlo Nuclear Data Adjustment via Integral Information,” Eur. Phys. J. Plus, 133, 537 (2018); http://dx.doi.org/10.1140/epjp/i2018-12361-x.
  • T. ENDO and A. YAMAMOTO, “Data Assimilation Using Subcritical Measurement of Prompt Neutron Decay Constant,” Nucl. Sci. Eng., 194, 11, 1089 (2020); http://dx.doi.org/10.1080/00295639.2020.1720499.
  • “International Handbook of Evaluated Criticality Safety Benchmark Experiments,” NEA/NSC/DOC(95)03, T. IVANOVA et al., Eds., Organisation for Economic Co-operation and Development, Nuclear Energy Agency (July 2019).
  • “International Reactor Physics Experiment Evaluation (IRPhE) Project,” Organisation for Economic Co-operation and Development, Nuclear Energy Agency, Nuclear Science Committee; https://www.oecd-nea.org/science/wprs/irphe/ (current as Jan. 27, 2023).
  • K. YOKOYAMA et al., “Development of the Unified Cross-Section Set ADJ2017,” JAEA-Research 2018-011, Japan Atomic Energy Agency (Mar. 2019) (in Japanese); https://doi.org/10.11484/jaea-research-2018-011.
  • Accelerator-Driven System at Kyoto University Critical Assembly, C. H. PYEON, Ed., Springer Singapore, Singapore (2021); http://dx.doi.org/10.1007/978-981-16-0344-0.
  • C. H. PYEON et al., “Void Reactivity in Lead and Bismuth Sample Reactivity Experiments at Kyoto University Critical Assembly,” Nucl. Sci. Eng. (2023); http://dx.doi.org/10.1080/00295639.2023.2172311.
  • K. YOKOYAMA et al., “Development of Comprehensive and Versatile Framework for Reactor Analysis, MARBLE,” Ann. Nucl. Energy, 66, 51 (2014); http://dx.doi.org/10.1016/j.anucene.2013.11.047.
  • C. J. WERNER et al., “MCNP6.2 Release Notes,” LA-UR-18-20808, Los Alamos National Laboratory (2018).
  • K. SHIBATA et al., “JENDL-4.0: A New Library for Nuclear Science and Engineering,” J. Nucl. Sci. Technol., 48, 1 (2011); http://dx.doi.org/10.1080/18811248.2011.9711675.
  • J. A. FAVORITE et al., “Adjoint-Based Sensitivity and Uncertainty Analysis for Density and Composition: A User’s Guide,” Nucl. Sci. Eng., 185, 3, 384 (2017); http://dx.doi.org/10.1080/00295639.2016.1272990.
  • B. T. REARDEN and M. A. JESSEE, “SCALE Code System,” ORNL/TM-2005/39, Version 6.2.1, Oak Ridge National Laboratory (2016).
  • R. E. MACFARLANE and D. W. MUIR, “NJOY99.0 Code System for Producing Pointwise and Multigroup Neutron and Photon Cross Sections from ENDF/B Data,” PSR-480/NJOY99.0, Los Alamos National Laboratory (2000).
  • K. YOKOYAMA and T. KITADA, “Generalized Formulation of Extended Cross-Section Adjustment Method Based on Minimum Variance Unbiased Linear Estimation,” J. Nucl. Sci. Technol., 56, 1, 87 (2019); http://dx.doi.org/10.1080/00223131.2018.1531078.
  • R. KATANO, A. YAMAMOTO, and T. ENDO, “Sensitivity Coefficient Evaluation of an Accelerator-Driven System Using ROM-Lasso Method,” Nucl. Sci. Eng., 196, 10, 1194 (2022); http://dx.doi.org/10.1080/00295639.2022.2067447.
  • R. KATANO, A. YAMAMOTO, and T. ENDO, “Proposal and Application of ROM-Lasso Method for Sensitivity Coefficient Evaluation,” presented at PHYSOR 2022 Conf., Pittsburgh, Pennsylvania, May 15–20, 2022.
  • K. SUGINO et al., “Preparation of Fast Reactor Group Constant Sets UFLIB.J40 and JFS-3-J4.0 Based on the JENDL-4.0 Data,” JAEA-Data/Code 2011-017, Japan Atomic Energy Agency (Jan. 2012) (in Japanese); https://doi.org/10.11484/jaea-data-code-2011-017.
  • O. IWAMOTO et al., “Japanese Evaluated Nuclear Data Library Version 5: JENDL-5,” J. Nucl. Sci. Technol., 60, 1, (2023); http://dx.doi.org/10.1080/00223131.2022.2141903.
  • M. FUKUSHIMA et al., “Systematic Measurements and Analyses for Lead Void Reactivity Worth in a Plutonium Core and Two Uranium Cores with Different Enrichment,” Nucl. Sci. Eng., 194, 2, 138 (2020); http://dx.doi.org/10.1080/00295639.2019.1663089.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.