72
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of Neutron Cross-Section Data Using Gaussian Mixture Model and Digital Filter

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 1583-1606 | Received 27 May 2023, Accepted 11 Sep 2023, Published online: 19 Oct 2023

References

  • D. KENNEDY, “New Nuclear Power Generation in the UK: Cost Benefit Analysis,” Energy Policy, 35, 7, 3701 (2007); https://ideas.repec.org/a/eee/enepol/v35y2007i7p3701-3716.html.
  • M. ABU-KHADER, “Recent Advances in Nuclear Power: A Review,” Prog. Nucl. Energy, 51, 2, 225 (2009); https://doi.org/10.1016/j.pnucene.2008.05.001.
  • E. S. KORMAZEVA et al., “141Pr(α,x): New Cross-Section Data with Special Reference to 140Nd Production for Medicine,” Nucl. Sci. Eng., 197, 7, 1293 (2023); https://doi.org/10.1080/00295639.2022.2162303.
  • B. GODDARD, A. SOLODOV, and V. FEDCHENKO, “IAEA Significant Quantity Values: Time for a Closer Look?” Nonproliferation Rev., 23, 5–6, 677 (2016); https://doi.org/10.1080/10736700.2017.1339934.
  • G. SCHNABEL et al., “Conception and Software Implementation of a Nuclear Data Evaluation Pipeline,” Nucl. Data Sheets, 173, 239 (2021); https://doi.org/10.1016/j.nds.2021.04.007; https://www.sciencedirect.com/science/article/pii/S009037522100017X.
  • D. L. SMITH, “A Least-Squares Computational ‘Tool Kit,’” Nuclear Data and Measurements Series, UNT Digital Library (1993).
  • N. SOPPERA, M. BOSSANT, and E. DUPONT, “JANIS 4: An Improved Version of the NEA Java-Based Nuclear Data Information System,” Nucl. Data Sheets, 120, 294 (2014); https://doi.org/10.1016/j.nds.2014.07.071; https://www.sciencedirect.com/science/article/pii/S0090375214005237.
  • R. CAPOTE, D. L. SMITH, and A. TRKOV, “Nuclear Data Evaluation Methodology Including Estimates of Covariances,” EPJ Web Conf., 8, 4001 (2010); https://doi.org/10.1051/epjconf/20100804001.
  • M. HERMAN et al., “New Paradigm for Nuclear Data Evaluation,” EPJ Web Conf., 239, 11001 (2020); https://doi.org/10.1051/epjconf/202023911001.
  • P. VICENTE-VALDEZ, L. BERNSTEIN, and M. FRATONI, “Nuclear Data Evaluation Augmented by Machine Learning,” Ann. Nucl. Energy (Oxford), 163 (2021); https://doi.org/10.1016/j.anucene.2021.108596.
  • H. IWAMOTO, “Generation of Nuclear Data Using Gaussian Process Regression,” J. Nucl. Sci. Technol., 57, 8, 1 (2020); https://doi.org/10.1080/00223131.2020.1736202.
  • M. A. B. HAMID et al., “Generation of Proton- and Alpha-Induced Nuclear Cross-Section Data via Random Forest Algorithm: Production of Radionuclide 111In,” Appl. Sci., 11, 15 (2021); https://doi.org/10.3390/app11156969; https://www.mdpi.com/2076-3417/11/15/6969.
  • S. P. RAM et al., “Application of Kalman Filtering Technique for Evaluation of Neutron Cross Section Data of 100Mo (n, 2n)99Mo Reaction,” Nucl. Instrum. Methods Phys. Res. Sect. A, 1020, 165850 (2021); https://doi.org/10.1016/j.nima.2021.165850; https://www.sciencedirect.com/science/article/pii/S0168900221008354.
  • D. NEUDECKER et al., “Enhancing Nuclear Data Validation Analysis by Using Machine Learning,” Nucl. Data Sheets, 167, 36 (2020); https://doi.org/10.1016/j.nds.2020.07.002; https://www.sciencedirect.com/science/article/pii/S0090375220300247.
  • M. ALRWASHDEH, “239Pu Evaluation Comparison Study,” Ann. Nucl. Energy, 118, 313 (2018); https://doi.org/10.1016/j.anucene.2018.04.034; https://www.sciencedirect.com/science/article/pii/S0306454918302196.
  • M. ALRWASHDEH et al., “Nuclear Data Statistical Treatment,” Proc. 21st Int. Conf. Nuclear Engineering, Chengdu, China, July 29–August 2, 2013; https://doi.org/10.1115/ICONE21-16790.
  • M. ALRWASHDEH and W. KAN, “U233 Data Evaluation for Criticality Study,” J. Nucl. Eng. Radiat. Sci., 2, 3, 34501 (2016); https://doi.org/10.1115/1.4032814.
  • V. SOBES, L. C. LEAL, and G. ARBANAS, “Nuclear Data Adjustment with SAMMY Based on Integral Experiments;” Trans. Am. Nucl. Soc., 111, 843 (2014); https://www.osti.gov/biblio/1185530.
  • “Sammy,” Oak Ridge National Laboratory; https://www.ornl.gov/onramp/sammy.
  • M. ALRWASHDEH and W. KAN, “Development of a Code FITWR for Nuclear Cross Section Statistical Analysis,” Ann. Nucl. Energy, 70, 130 (2014); https://doi.org/10.1016/j.anucene.2014.03.008.
  • D. MUIR et al., “The Global Assessment of Nuclear Data, GANDR,” Proc. Int. Conf. Nuclear Data for Science and Technology, Nice, France, April 22–27, 2007, p. 717, EDP Sciences (2007).
  • P. G. YOUNG, E. D. ARTHUR, and M. B. CHADWICK, “Comprehensive Nuclear Model Calculations: Introduction to the Theory and Use of the GNASH Code, ” Los Alamos National Laboratory; https://www.osti.gov/biblio/7183361.
  • C. DE SAINT JEAN et al., “CONRAD—A Code for Nuclear Data Modeling and Evaluation,” EPJ Nucl. Sci. Technol., 7, 10 (2021); https://doi.org/10.1051/epjn/2021011.
  • P. HELGESSON and H. SJSTRAND, “Fitting a Defect Non-Linear Model with or Without Prior, Distinguishing Nuclear Reaction Products as an Example,” Rev. Sci. Instrum., 88, 11 (2017); https://doi.org/10.1063/1.4993697.
  • “Experimental Nuclear Reaction Data,”International Atomic Energy Agency; http://www-nds.iaea.org/exfor.
  • A. KONING and D. ROCHMAN, “Modern Nuclear Data Evaluation with the TALYS Code System,” Nucl. Data Sheets, 113, 12, 2841 (2012); https://doi.org/10.1016/j.nds.2012.11.002; https://www.sciencedirect.com/science/article/pii/S0090375212000889.
  • M. KARKERA et al., “Detailed Data Sets Related to the MAHE-Manipal Evaluation of Nuclear Data of 232-Th(n, 2n)231-Th Reaction Cross Section with Inclusion of a Comprehensive Covariance Analysis, ” Manipal Academy of Higher Education (2023); https://doi.org/10.13140/RG.2.2.33016.11524/1.
  • A. FILATENKOV, “Neutron Activation Cross Sections Measured at KRI in Neutron Energy Region 13.4–14.9 MeV,” International Atomic Energy Agency, Nuclear Data Services (Dec. 2016).
  • H. NAIK et al., “Neutron Induced Reaction Cross-Section of 232Th and 238U at the Neutron Energies of 2.45 and 14.8 MeV,” J. Radioanal. Nucl. Chem., 303, 3, 2497 (2015); https://doi.org/10.1007/s10967-014-3812-8.
  • P. M. PRAJAPATI et al., “Measurement of the Neutron Capture Cross-Sections of 232Th at 5.9 MeV and 15.5 MeV,” Eur. Phys. J. A, 48, 3, 35 (2012); https://doi.org/10.1140/epja/i2012-12035-4.
  • R. CRASTA et al., “Measurement of the 232Th(n,γ)233Th and 232Th(n,2n)231Th Reaction Cross-Sections at Neutron Energies of 8.04 ± 0.30 and 11.90 ± 0.35MeV,” Ann. Nucl. Energy, 47, 160 (2012); https://doi.org/10.1016/j.anucene.2012.02.010; https://www.sciencedirect.com/science/article/pii/S0306454912000448.
  • S. MUKERJI et al., “Measurement of 232Th(n,γ) and 232Th(n, 2n) Cross-Sections at Neutron Energies of 13.5, 15.5 and 17.28 MeV Using Neutron Activation Techniques,” Pramana, 79, 2, 249 (2012); https://doi.org/10.1007/s12043-012-0299-0.
  • I. A. REYHANCAN, “Measurements and Model Calculations of Activation Cross Sections for 232Th(n,2n)231Th Reaction Between 13.57 and 14.83MeV Neutrons,” Ann. Nucl. Energy, 38, 11, 2359 (2011); https://doi.org/10.1016/j.anucene.2011.07.032; https://www.sciencedirect.com/science/article/pii/S030645491100315X.
  • H. NAIK et al., “Measurement of the Neutron Capture Cross-Section of 232Th Using the Neutron Activation Technique,” Eur. Phys. J. A., 47, 4, 51 (2011); https://doi.org/10.1140/epja/i2011-11051–2.
  • D. KARAMANIS et al., “Neutron Cross-Section Measurements in the Th-U Cycle by the Activation Method,” Nucl. Instrum. Methods Phys. Res. Sect. A, 505, 1, 381 (2003); https://doi.org/10.1016/S0168-9002(03)01102-1; https://www.sciencedirect.com/science/article/pii/S0168900203011021.
  • H. CHATANI and I. KIMURA, “Measurement of the 232Th(n,2n)231Th Reaction Cross Section with 14.5 MeV Neutrons,” Ann. Nucl. Energy, 19, 8, 425 (1992); https://doi.org/10.1016/0306-4549(92)90065-J; https://www.sciencedirect.com/science/article/pii/030645499290065J.
  • P. RAICS et al., “Measurement of the Cross Sections for the 232Th(n,2n)231Th Reaction in the 6.745 to 10.450 MeV Energy Range,” Phys. Rev. C, 32, 87 (1985); https://doi.org/10.1103/PhysRevC.32.87.
  • H. KARIUS, A. ACKERMANN, and W. SCOBEL, “The Pre-Equilibrium Contribution to the (n,2n) Reactions of 232Th and 238U,” J. Phys. G, 5, 715 (1979); https://doi.org/10.1088/0305-4616/5/5/011.
  • R. J. PRESTWOOD and B. P. BAYHURST, “(n,2n) Excitation Functions of Several Nuclei from 12.0 to 19.8 Mev,” Phys. Rev., 121, 1438 (1961); https://doi.org/10.1103/PhysRev.121.1438.
  • J. P. BUTLER and D. C. SANTRY, “Th232(n,2n)Th231 Cross Section from Threshold to 20.4 MEV,” Can. J. Chem., 39, 3, 689 (1961); https://doi.org/10.1139/v61-083.
  • J. PERKIN and R. COLEMAN, “Cross-Sections for the (n,2n) Reactions of 232Th, 238U and 237Np with 14 MeV Neutrons,” J. Nucl. Energy A/B, 14, 1, 69 (1961); https://doi.org/10.1016/0368-3230(61)90094-5; https://www.sciencedirect.com/science/article/pii/0368323061900945.
  • M. KARKERA et al., “Detailed Data Sets Related to the MAHE-Manipal Evaluation of Nuclear Data of 232-Th(n, 2n)231-Th Reaction Cross Section with Inclusion of a Comprehensive Covariance Analysis, ” Manipal Academy of Higher Education (2023); https://doi.org/10.13140/RG.2.2.33016.11524/1.
  • M. KARKERA et al., “Measurement and Covariance Analysis of 232Th(n,2n)231Th Reaction Cross Section,” J. Radioanal. Nucl. Chem., 322, 2, 817 (2019); https://doi.org/10.1007/s10967-019-06722-3.
  • M. KARKERA et al., “Measurement and Covariance Analysis of 232Th(n, 2n)231Th Reaction Cross Sections at the Effective Neutron Energies of 8.97 and 16.52 MeV,” J. Radioanal. Nucl. Chem., 318, 3, 1893 (2018); https://doi.org/10.1007/s10967-018-6199-0.
  • A. KALAMARA et al., “Investigation of the 241Am(n,2n)240Am Cross Section,” Phys. Rev. C, 93, 14610 (2016); https://doi.org/10.1103/PhysRevC.93.014610.
  • C. SAGE et al., “High Resolution Measurements of the 241Am(n,2n) Reaction Cross Section,” Phys. Rev. C, 81, 64604 (2010); https://doi.org/10.1103/PhysRevC.81.064604.
  • A. P. TONCHEV et al., “Measurement of the 241Am(n,2n) Reaction Cross Section from 7.6 MeV to 14.5 MeV,” Phys. Rev. C, 77, 54610 (2008); https://doi.org/10.1103/PhysRevC.77.054610.
  • R. LOUGHEED et al., “239Pu and 241Am (n,2n) Cross-Section Measurements near En = 14 MeV,” Radiochim. Acta, 90, 12, 833 (2002); https://doi.org/10.1524/ract.2002.90.12_2002.833.
  • S. BADWAR et al., “Measurement of Formation Cross-Section of 99Mo from the 98Mo(n,γ) and 100Mo(n,2n) Reactions,” Appl. Radiat. Isot., 129, 117 (2017); https://doi.org/10.1016/j.apradiso.2017.08.019; https://www.sciencedirect.com/science/article/pii/S0969804317300908.
  • V. SEMKOVA and R. NOLTE, “Measurement of Neutron Activation Cross Sections on Mo Isotopes in the Energy Range from 7 MeV to 15 MeV,” EPJ Web Conf., 66, 3077 (2014); https://doi.org/10.1051/epjconf/20146603077.
  • P. REIMER et al., “Reaction Mechanisms of Fast Neutrons on Stable Mo Isotopes Below 21 MeV,” Phys. Rev. C, 71, 4, 44617 (2005); https://doi.org/10.1103/PhysRevC.71.044617.
  • T. D. THIEP et al., “Nuclear Reactions with 14 MeV Neutrons and Bremsstrahlungs in Giant Dipole Resonance (GDR) Region Using Small Accelerators,” Nucl. Phys. A, 722, C568 (2003); https://doi.org/10.1016/S0375-9474(03)01429-5; https://www.sciencedirect.com/science/article/pii/S0375947403014295.
  • K. T. OSMAN and F. I. HABBANI, “Measurement and Study of (n,p) Reaction Cross-Sections for Cr, Ti, Ni, Co, Zr and Mo Isotopes Using 14.7 MeV Neutrons,” International Atomic Energy Agency (1996); http://inis.iaea.org/search/search.aspx?orig_q=RN:28026846; iNDC(SUD)-001.
  • X. KONG et al., “The Cross Section Measurements for 100Mo(n,2n)99Mo, 96Mo(n,p)96Nb and 92Mo(n,α)89m+gZr Reactions,” Physica Energiae Fortis et Physica Nuclearis, 15, 6, 549 (1991); http://inis.iaea.org/search/search.aspx?orig_q=RN:23033064.
  • Y. IKEDA et al., “Activation Cross Section Measurements for Fusion Reactor Structural Materials at Neutron Energy from 13.3 to 15.0 MeV Using FNS Facility,” JAERI 1312, Japan Atomic Energy Research Institute (1988); https://inis.iaea.org/collection/NCLCollectionStore/_Public/19/086/19086046.pdf.
  • M. ZHOU, Y. ZHANG, and C. WANG, “Shell Effect from the Cross Section of the (n,2n) Reaction Produced by 14.6 MeV Neutron,” Chin. J. Nucl. Phys., 9, 1, 34 (1987); http://inis.iaea.org/search/search.aspx?orig_q=RN:19054111.
  • A. MARCINKOWSKI et al., “Cross Sections of Fast Neutron Induced Reactions on Molybdenum Isotopes,” Z. Phys. A, 323, 1, 91 (1986); https://doi.org/10.1007/BF01294558.
  • N. MOLLA et al., “Activation Cross Sections for Some Isotopes of Mg, Ti, V, Ni, Zr and Mo at 14 MeV Neutrons,” International Atomic Energy Agency (1986).
  • M. RAHMAN and S. QAIM, “Excitation Functions of Some Neutron Threshold Reactions on Isotopes of Molybdenum,” Nucl. Phys. A, 435, 1, 43 (1985); https://doi.org/10.1016/0375-9474(85)90301-X; https://www.sciencedirect.com/science/article/pii/037594748590301X.
  • H. ATSUMI et al., “Measurement of Neutron Activation Cross-Sections of Fusion Reactor Materials at 14.6 MeV,” International Atomic Energy Agency, Nuclear Data Services (1984).
  • S. AMEMIYA, K-I. ISHIBASHI, and T. KATOH, “Neutron Activation Cross Section of Molybdenum Isotopes at 14.8 MeV,” J. Nucl. Sci. Technol., 19, 10, 781 (1982); https://doi.org/10.1080/18811248.1982.9734218.
  • M. H. Y. FUJINO and I. KUMABE, “Measurement of Neutron Activation Cross-Sections of Fusion Reactor Materials at 14.6 MeV,” No. 51, Nuclear Energy Agency Nuclear Data Committee (1977).
  • G. N. MASLOV, F. NASYROV, and N. PASHKIN, “Experimental Cross-Sections for Nuclear Reactions Involving Neutrons with Energies of About 14 MeV,” INDC(CCP)-42, International Atomic Energy Agency, Nuclear Data Services (1974).
  • J. ARAMINOWICZ and J. DRESLER, “Investigation of the (n, 2n) Reaction with 14.6-MeV Neutrons,” Brookhaven National Laboratory, National Nuclear Data Center (1973).
  • S. QAIM, “Activation Cross Sections, Isomeric Cross-Section Ratios and Systematics of (n, 2n) Reactions at 1415 MeV,” Nucl. Phys. A, 185, 2, 614 (1972); https://doi.org/10.1016/0375-9474(72)90036-X; https://www.sciencedirect.com/science/article/pii/037594747290036X.
  • W.-D. LU, N. RANAKUMAR, and R. W. FINK, “Activation Cross Sections for (n,2n) Reactions at 14.4 MeV in the Region Z = 40–60: Precision Measurements and Systematics,” Phys. Rev. C, 1, 350 (1970); https://doi.org/10.1103/PhysRevC.1.350.
  • P. CUZZOCREA, E. PERILLO, and S. NOTARRIGO, “Activation Cross Sections of Mo Isotopes for 14.1 MeV Neutrons,” Nucl. Phys. A, 103, 3, 616 (1967); https://doi.org/10.1016/0375-9474(67)90927-X.
  • J. CSIKAI and G. PETÖ, “Influence of Direct Inelastic Scattering on (n, 2n) Cross Sections,” Acta Phys. Acad. Scientiarum Hungaricae, 23, 1, 87 (1967); https://doi.org/10.1007/BF03157358.
  • P. STROHAL, N. CINDRO, and B. EMAN, “Reaction Mechanism and Shell Effects from the Interaction of 14.6 MeV Neutrons with Nuclei,” Nucl. Phys., 30, 49 (1962); https://doi.org/10.1016/0029-5582(62)90031-7; https://www.sciencedirect.com/science/article/pii/0029558262900317.
  • C. KHURANA and H. HANS, “Cross-Sections for (n, 2n) Reactions at 14.8 MeV,” Nucl. Phys., 28, 1, 560 (1961); https://doi.org/10.1016/0029-5582(61)91077-X.
  • E. B. PAUL and R. L. CLARKE, “Cross-Section Measurements of Reactions Induced by Neutrons of 14.5Mev. Energy,” Can. J. Phys., 31, 2, 267 (1953); https://doi.org/10.1139/p53-028.
  • J. LUO and L. JIANG, “Cross-Sections for (n,2n), (n,α), (n,p), (n,d), and (n,t) Reactions on Molybdenum Isotopes in the Neutron Energy Range of 13 to 15 MeV,” Chin. Phys. C, 44, 11, 114002 (2020); https://doi.org/10.1088/1674-1137/abaded.
  • S. P. RAM et al., “Measurement and Covariance Analysis of 100Mo(n,2n)99Mo and 96Mo(n,p)96Nb Reaction Cross Sections at the Incident Neutron Energy of 14.54 MeV,” J. Radioanal. Nucl. Chem., 325, 3, 831 (2020); https://doi.org/10.1007/s10967-020-07213-6.
  • E. M. ZSOLNAY et al., “Summary Description of the New International Reactor Dosimetry and Fusion File (IRDFF Release 1.0),” INDC (NDS)-0616, International Atomic Energy Agency, International Nuclear Data Committee (2012).
  • “Nuclear Wallet Cards,” International Atomic Energy Agency; https://www.iaea.org/resources/databases/nuclear-wallet-cards.
  • T. S. PHATAK et al., “Regression Analysis of Experimental Reaction Cross-Section Data of 241Am(n, 2n)240Am,” EPJ Web Conf., 284, 14016 (2023); https://doi.org/10.1051/epjconf/202328414016.
  • S. P. RAM et al., “Error Propagation Using Extended Unscented Transformation Technique in Micro-Correlation Method for Covariance Analysis of Efficiency of a HPGe Detector,” Nucl. Instrum. Methods Phys. Res. Sect. A, 953, 163057 (2020); https://doi.org/10.1016/j.nima.2019.163057; https://www.sciencedirect.com/science/article/pii/S0168900219314081.
  • C. M. BISHOP, Pattern Recognition and Machine Learning, Springer, New York (2016).
  • F. PEDREGOSA et al., “Scikit-Learn: Machine Learning in Python,” J. Mach. Learn. Res., 12, 2825 (2011).
  • N. R. DRAPER and H. SMITH, Applied Regression Analysis, Springer, New York (1998).
  • A. KONING et al., “TALYS-1.96/2.0,” International Atomic Energy Agency; https://www-nds.iaea.org/talys/tutorials/talys_v1.96.pdf.
  • G. SCHNABEL, “Large Scale Bayesian Nuclear Data Evaluation with Consistent Model Defects,” PhD Thesis,Technischen Universität Wien (2015).
  • D. SIMON, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, John Wiley & Sons (2006).
  • W. H. PRESS et al., Numerical Recipes 3rd Edition: The Art of Scientific Computing, Cambridge University Press (2007).
  • D. BROWN et al., “ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-Project Cross Sections, New Standards and Thermal Scattering Data,” Nucl. Data Sheets, 148, 1 (2018); https://doi.org/10.1016/j.nds.2018.02.001; https://www.sciencedirect.com/science/article/pii/S0090375218300206.
  • A. J. M. PLOMPEN et al., “The Joint Evaluated Fission and Fusion Nuclear Data Library, JEFF-3.3,” Eur. Phys. J. A, 56, 7, 181 (2020); https://doi.org/10.1140/epja/s10050-020-00141-9.
  • K. SHIBATA et al., “Activation Cross-Section File for Decommissioning of LWRs,” Proc. 2015 Symp. Nuclear Data, Tokai, Ibaraki, Japan, November 19–20, 2015, Japan Atomic Energy Agency (2016); http://inis.iaea.org/search/search.aspx?orig_q=RN:48045187.
  • E. MENDOZA, and D. CANO-OTT, “Update of the Evaluated Neutron Cross Section Libraries for the Geant4 Code.” INDC International Nuclear Data Committee (2018).
  • Y. ZHUANG et al., “CENDL-3 Chinese Evaluated Nuclear Data Library, Version 3,” Atomic Energy Society of Japan (2002); http://inis.iaea.org/search/search.aspx?orig_q=RN:51063143.
  • “TENDL-2021,” TALYS-Based Evaluated Nuclear Data Library; https://tendl.web.psi.ch/tendl_2021/tendl2021.html.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.