85
Views
0
CrossRef citations to date
0
Altmetric
Selected Papers From the M&C 2023 Special Issue

Reactor Physics Monitoring of a Source-Driven Subcritical System in Stationary State by Deterministic and Probabilistic Deep Neural Networks

ORCID Icon & ORCID Icon
Received 18 Nov 2023, Accepted 06 Mar 2024, Published online: 01 Apr 2024

References

  • Safety of Research Reactors: Specific Safety Requirements, Revised 2016, International Atomic Energy Agency (2016).
  • Considerations of Safety and Utilization of Subcritical Assemblies,” International Atomic Energy Agency (2021).
  • C. RUBBIA, J. A. RUBIO, and S. BUONO, “CERN-Group Conceptual Design of a Fast Neutron Operated High Power Energy Amplifier,” CERN/AT/95-44(ET), p. 187–312, International Atomic Energy Agency (1995).
  • K. TSUJIMOTO et al., “Research and Development Program on Accelerator Driven Subcritical System in JAEA,” J. Nucl. Sci. Technol., 44, 3, 483 (2007); https://dx.doi.org/10.1080/18811248.2007.9711312.
  • H. NIFENECKER et al., “Basics of Accelerator Driven Subcritical Reactors,” Nucl. Instrum. Methods Phys. Res., Sect. A, 463, 3, 428 (2001); https://dx.doi.org/10.1016/S0168-9002(01)00160-7.
  • H. A. ABDERRAHIM, “Multi-Purpose hYbrid Research Reactor for High-Tech Applications: A Multipurpose Fast Spectrum Research Reactor,” Int. J. Energy Res., 36, 15, 1331 (2012); https://dx.doi.org/10.1002/er.1891.
  • J. PEVEY et al., “Genetic Algorithm Design of a Coupled Fast and Thermal Subcritical Assembly,” Nucl. Technol., 206, 4, 609 (2020); https://dx.doi.org/10.1080/00295450.2019.1664198.
  • K. SUN, L. HU, and C. FORSBERG, “Neutronics Feasibility of an MIT Reactor–Driven Subcritical Facility for the Fluoride-Salt–Cooled High-Temperature Reactor,” Int. J. Energy Res., 41, 14, 2248 (2017); https://dx.doi.org/10.1002/er.3786.
  • J. RATAJ et al., “The Project of VR-2 Subcritical Assembly,” Nucl. Eng. Des., 386, 111578 (2022); https://dx.doi.org/10.1016/j.nucengdes.2021.111578.
  • M. SZIEBERTH et al., “Measurement of Multiple α-Modes at the Delphi Subcritical Assembly by Neutron Noise Techniques,” Ann. Nucl. Energy, 75, 146 (2015); https://dx.doi.org/10.1016/j.anucene.2014.07.018.
  • A. GANDINI and M. SALVATORES, “The Physics of Subcritical Multiplying Systems,” J. Nucl. Sci. Technol., 39, 6, 673 (2002); https://dx.doi.org/10.1080/18811248.2002.9715249.
  • M. ROSSELET, T. WILLIAMS, and R. CHAWLA, “Subcriticality Measurements Using an Epithermal Pulsed-Neutron-Source Technique in Pebble-Bed HTR Configurations,” Ann. Nucl. Energy, 25, 4, 285 (1998); https://dx.doi.org/10.1016/S0306-4549(97)00059-5.
  • V. V. KULIK and J. C. LEE, “Space-Time Correction for Reactivity Determination in Source-Driven Subcritical Systems,” Nucl. Sci. Eng., 153, 1, 69 (2006); https://dx.doi.org/10.13182/NSE06-A2596.
  • C. A. PRESKITT et al., “Interpretation of Pulsed-Source Experiments in the Peach Bottom HTGR,” Nucl. Sci. Eng., 29, 2, 283 (1967); https://dx.doi.org/10.13182/NSE67-4.
  • S. BAJPAI et al., “Evaluation of Spatial Correction Factors for BRAHMMA Subcritical Assembly,” Nucl. Sci. Eng., 181, 3, 361 (2015); https://dx.doi.org/10.13182/NSE14-137.
  • V. BÉCARES et al., “Evaluation of the Criticality Constant from Pulsed Neutron Source Measurements in the Yalina-Booster Subcritical Assembly,” Ann. Nucl. Energy, 53, 40 (2013); https://dx.doi.org/10.1016/j.anucene.2012.10.002.
  • C. BERGLOF, “On Measurement and Monitoring of Reactivity in Subcritical Reactor Systems,” PhD Thesis, KTH Royal Institute of Technology, School of Engineering Sciences (2010).
  • C. BERGLÖF et al., “Auto-Correlation and Variance-to-Mean Measurements in a Subcritical Core Obeying Multiple Alpha-Modes,” Ann. Nucl. Energy, 38, 2, 194 (2011); https://dx.doi.org/10.1016/j.anucene.2010.11.009.
  • K. NAKAJIMA et al., “Feynman-α and Rossi-α Analyses for a Subcritical Reactor System Driven by a Pulsed Spallation Neutron Source in Kyoto University Critical Assembly,” J. Nucl. Sci. Technol., 58, 1, 117 (2021); https://dx.doi.org/10.1080/00223131.2020.1806138.
  • C. BERGLÖF et al., “Spatial and Source Multiplication Effects on the Area Ratio Reactivity Determination Method in a Strongly Heterogeneous Subcritical System,” Nucl. Sci. Eng., 166, 2, 134 (2010); https://dx.doi.org/10.13182/NSE09-87.
  • H. TANINAKA et al., “Determination of Subcritical Reactivity of a Thermal Accelerator-Driven System from Beam Trip and Restart Experiment,” J. Nucl. Sci. Technol., 48, 6, 873 (2011); https://dx.doi.org/10.1080/18811248.2011.9711772.
  • K. NAKAJIMA et al., “Source Multiplication Measurements and Neutron Correlation Analyses for a Highly Enriched Uranium Subcritical Core Driven by an Inherent Source in Kyoto University Critical Assembly,” J. Nucl. Sci. Technol., 57, 10, 1152 (2020); https://dx.doi.org/10.1080/00223131.2020.1772896.
  • C.-M. PERSSON et al., “Analysis of Reactivity Determination Methods in the Subcritical Experiment Yalina,” Nucl. Instrum. Methods Phys. Res., Sect. A, 554, 1, 374 (2005); https://dx.doi.org/10.1016/j.nima.2005.07.058.
  • N. MARIE et al., “Reactivity Monitoring of the Accelerator Driven VENUS-F Subcritical Reactor with the ‘Current-to-Flux’ Method,” Ann. Nucl. Energy, 128, 12 (2019); https://dx.doi.org/10.1016/j.anucene.2018.12.033.
  • V. BÉCARES et al., “Validation of ADS Reactivity Monitoring Techniques in the Yalina-Booster Subcritical Assembly,” Ann. Nucl. Energy, 53, 331 (2013); https://dx.doi.org/10.1016/j.anucene.2012.10.001.
  • Y. CAO and Y. GOHAR, “YALINA-Booster Subcritical Assembly Pulsed-Neutron Experiments : Data Processing and Spatial Corrections,” ANL-10/22, Argonne National Laboratory (2010); https://dx.doi.org/10.2172/994056.
  • A. TALAMO et al., “Impact of the Neutron Detector Choice on Bell and Glasstone Spatial Correction Factor for Subcriticality Measurement,” Nucl. Instrum. Methods Phys. Res., Sect. A, 668, 71 (2012); https://dx.doi.org/10.1016/j.nima.2011.11.072.
  • F. PERDU et al., “Prompt Reactivity Determination in a Subcritical Assembly Through the Response to a Dirac Pulse,” Prog. Nucl. Energy, 42, 1, 107 (2003); https://dx.doi.org/10.1016/S0149-1970(02)00101-4.
  • C. JAMMES, B. GESLOT, and G. IMEL, “Advantage of the Area-Ratio Pulsed Neutron Source Technique for ADS Reactivity Calibration,” Nucl. Instrum. Methods Phys. Res., Sect. A, 562, 2, 778 (2006); https://dx.doi.org/10.1016/j.nima.2006.02.054.
  • W. NAING, M. TSUJI, and Y. SHIMAZU, “Subcriticality Measurement of Pressurized Water Reactors by the Modified Neutron Source Multiplication Method,” J. Nucl. Sci. Technol., 40, 12, 983 (2003); https://dx.doi.org/10.3327/jnst.40.983.
  • M. TSUJI, N. SUZUKI, and Y. SHIMAZU, “Subcriticality Measurement by Neutron Source Multiplication Method with a Fundamental Mode Extraction,” J. Nucl. Sci. Technol., 40, 3, 158 (2003); https://dx.doi.org/10.1080/18811248.2003.9715346.
  • J. B. DOSHI and L. M. GROSSMAN, “Space-Time Dynamics of a Fast Breeder Reactor for Localized Disturbances,” Nucl. Sci. Eng., 65, 1, 106 (1978); https://dx.doi.org/10.13182/NSE78-A27130.
  • J. MOREIRA and J. C. LEE, “Space-Time Analysis of Reactor-Control-Rod-Worth Measurements,” Nucl. Sci. Eng., 86, 1, 91 (1984); https://dx.doi.org/10.13182/NSE84-1.
  • K. O. OTT and D. A. MENELEY, “Accuracy of the Quasistatic Treatment of Spatial Reactor Kinetics,” Nucl. Sci. Eng., 36, 3, 402 (1969); https://dx.doi.org/10.13182/NSE36-402.
  • Y. LECUN, Y. BENGIO, and G. HINTON, “Deep Learning,” Nature, 521, 7553, 436 (2015); https://dx.doi.org/10.1038/nature14539.
  • N. DUPIN and E.-G. TALBI, “Machine Learning–Guided Dual Heuristics and New Lower Bounds for the Refueling and Maintenance Planning Problem of Nuclear Power Plants,” Algorithms, 13, 8, 185 (2020); https://dx.doi.org/10.3390/a13080185.
  • R. A. B. U. SALEEM, M. I. RADAIDEH, and T. KOZLOWSKI, “Application of Deep Neural Networks for High-Dimensional Large BWR Core Neutronics,” Nucl. Eng. Technol., 52, 12, 2709 (2020); https://dx.doi.org/10.1016/j.net.2020.05.010.
  • A. AYODEJI et al., “Deep Learning for Safety Assessment of Nuclear Power Reactors: Reliability, Explainability, and Research Opportunities,” Prog. Nucl. Energy, 151, 104339 (2022); https://dx.doi.org/10.1016/j.pnucene.2022.104339.
  • J. A. AGUIAR et al., “Bringing Nuclear Materials Discovery and Qualification into the 21st Century,” Nat. Commun., 11, 1, 2556 (2020); https://dx.doi.org/10.1038/s41467-020-16406-2.
  • P. J. O’NEAL, S. S. CHIRAYATH, and Q. CHENG, “A Machine Learning Method for the Forensics Attribution of Separated Plutonium,” Nucl. Sci. Eng., 196, 7, 811 (2022); https://dx.doi.org/10.1080/00295639.2021.2024037.
  • P. BARALDI, F. MANGILI, and E. ZIO, “A Prognostics Approach to Nuclear Component Degradation Modeling Based on Gaussian Process Regression,” Prog. Nucl. Energy, 78, 141 (2015); https://dx.doi.org/10.1016/j.pnucene.2014.08.006.
  • M. MENDOZA and P. V. TSVETKOV, “An Intelligent Fault Detection and Diagnosis Monitoring System for Reactor Operational Resilience: Power Transient Identification,” Prog. Nucl. Energy, 156, 104529 (2023); https://dx.doi.org/10.1016/j.pnucene.2022.104529.
  • X. WU et al., “A Comprehensive Survey of Inverse Uncertainty Quantification of Physical Model Parameters in Nuclear System thermal–hydraulics Codes,” Nucl. Eng. Des., 384, 111460 (2021); https://dx.doi.org/10.1016/j.nucengdes.2021.111460.
  • L. E. MOLOKO et al., “Prediction and Uncertainty Quantification of SAFARI-1 Axial Neutron Flux Profiles with Neural Networks,” Ann. Nucl. Energy, 188, 109813 (2023); https://dx.doi.org/10.1016/j.anucene.2023.109813.
  • C. CAO et al., “A Two-Step Neutron Spectrum Unfolding Method for Fission Reactors Based on Artificial Neural Network,” Ann. Nucl. Energy, 139, 107219 (2020); https://dx.doi.org/10.1016/j.anucene.2019.107219.
  • S. JIANG et al., “Nuclear Reactor Reactivity Prediction Using Feed Forward Artificial Neural Networks,” Advances in Neural Networks, F. SUN et al., Eds., pp. 400–409, ISNN 2008 5263, Springer (2008); https://dx.doi.org/10.1007/978-3-540-87732-5_45.
  • M. A. JIN et al., “Reactivity Estimation of Nuclear Reactor Combined with Neural Network and Mechanism Model,” presented at the 2012 IEEE Power and Energy Society General Mtg., pp. 1–6, San Diego, California, Institute of Electrical and Electronics Engineers (2012); https://dx.doi.org/10.1109/PESGM.2012.6345243.
  • A. J. ARUL, “Reactivity Surveillance in a Nuclear Reactor by Using a Layered Artificial Neural Network,” Nucl. Sci. Eng., 117, 3, 186 (1994); https://dx.doi.org/10.13182/NSE94-A28533.
  • M. R. OKTAVIAN et al., “Preliminary Development of Machine Learning–Based Error Correction Model for Low-Fidelity Reactor Physics Simulation,” Ann. Nucl. Energy, 187, 109788 (2023); https://dx.doi.org/10.1016/j.anucene.2023.109788.
  • P. SELTBORG et al., “Definition and Application of Proton Source Efficiency in Accelerator-Driven Systems,” Nucl. Sci. Eng., 145, 3, 390 (2003); https://dx.doi.org/10.13182/NSE03-A2390.
  • M. B. CHADWICK et al., “ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data,” Nucl. Data Sheets, 112, 12, 2887 (2011); https://dx.doi.org/10.1016/j.nds.2011.11.002.
  • C. J. WERNER et al., MCNP User’s Manual Code Version 6.2, LA-UR-17-29981, Los Alamos National Laboratory (2017).
  • R. D. E. GATCHALIAN and P. V. TSVETKOV, “Reactor Physics Analysis of a Source-Driven TRIGA Configuration in Subcritical Domain,” Ann. Nucl. Energy, 186, 109787 (2023); https://dx.doi.org/10.1016/j.anucene.2023.109787.
  • Handbook of Nuclear Engineering, D. G. CACUCI, Ed., Springer (2010).
  • I. GOODFELLOW, Y. BENGIO, and A. COURVILLE, Deep Learning, The MIT Press (2016).
  • M. ABADI et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems,” [object Object] (2016). https://doi.org/10.48550/ARXIV.1603.0446.
  • D. J. C. MACKAY, “Introduction to Gaussian Processes,” (1998).
  • K. HORNIK, M. STINCHCOMBE, and H. WHITE, “Multilayer Feedforward Networks Are Universal Approximators,” Neural Networks, 2, 5, 359 (1989); https://dx.doi.org/10.1016/0893-6080(89)90020-8.
  • D.-X. ZHOU, “Universality of Deep Convolutional Neural Networks,” Appl. Comput. Harmon. Anal., 48, 2, 787 (2020); https://dx.doi.org/10.1016/j.acha.2019.06.004.
  • O. DÜRR, B. SICK, and E. MURINA, Probabilistic Deep Learning: With Python, Keras, and TensorFlow Probability, Manning, Shelter Island, New York (2020).
  • L. LI et al., “Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization,” JMLR, arXiv 1603.06560 (2016); https://dx.doi.org/10.48550/ARXIV.1603.06560.
  • T. O’MALLEY et al., “KerasTuner” (2019).
  • L. BREIMAN, “Random Forests,” Mach. Learn., 45, 1, 5 (2001); https://dx.doi.org/10.1023/A:1010933404324.
  • T. HASTIE, R. TIBSHIRANI, and J. H. FRIEDMAN, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed., Springer (2009).
  • R. D. E. GATCHALIAN and P. V. TSVETKOV, “Traditional Machine Learning Methods in Predicting the Physics of Subcritical Systems in Source-Equilibrium,” Ann. Nucl. Energy, 201, 110413 (2024); 10.1016/j.anucene.2024.110413.
  • J. GAWLIKOWSKI et al., “A Survey of Uncertainty in Deep Neural Networks,” arXiv:2107.03342 (2022); https://dx.doi.org/10.48550/arXiv.2107.03342.
  • J. V. DILLON et al., “TensorFlow Distributions,” arXiv:1711.10604 (2017); https://dx.doi.org/10.48550/ARXIV.1711.10604.
  • X. WU et al., “Why Is Uncertainty Quantification Important for Machine Learning Models?,” Trans. Am. Nucl. Soc., 127, 442 American Nuclear Society (2022).
  • N. SRIVASTAVA et al., “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” J. Mach. Learn. Res., 15, 1, 1929 (2014).
  • Y. GAL and Z. GHAHRAMANI, “Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning,” arXiv:1506.02142 (2016); https://dx.doi.org/10.48550/arXiv.1506.02142.
  • C. BLUNDELL et al., “Weight Uncertainty in Neural Network,” Proc. 32nd Int. Conf. on Machine Learning, pp. 1613–1622, Proceedings of Machine Learning Research (2015).
  • C. M. BISHOP, Pattern Recognition and Machine Learning, Springer (2006).
  • Y. WEN et al., “Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches,” arXiv:1803.04386v2 (Mar. 12, 2018); https://arxiv.org/abs/1803.04386v2 (current as of Aug. 26, 2023).
  • J. L. LECOUEY et al., “Estimate of the Reactivity of the VENUS-F Subcritical Configuration Using a Monte Carlo MSM Method,” Ann. Nucl. Energy, 83, 65 (2015); 10.1016/j.anucene.2015.04.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.