0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analytical Prediction of Temperature Distribution in a Deep Geological Nuclear Waste Repository

ORCID Icon, , , , , , & show all
Received 02 Mar 2024, Accepted 21 Jun 2024, Published online: 31 Jul 2024

References

  • W. M. YE et al., “Advances on the Knowledge of the Buffer/Backfill Properties of Heavily-Compacted GMZ Bentonite,” Eng. Geol., 116, 12 (2010); https://doi.org/10.1016/j.enggeo.2010.06.002.
  • H. J. CHOI, M. LEE, and J. Y. LEE, “Preliminary Conceptual Design of a Geological Disposal System for High-Level Wastes from the Pyroprocessing of PWR Spent Fuels,” Nucl. Eng. Des., 241, 3348 (2011); https://doi.org/10.1016/j.nucengdes.2011.06.013.
  • P. ABOOTALEBI and G. SIEMENS, “Short-Term Thermal Modeling of a Conceptual Deep Geological Repository in Canada,” Environ. Geotech., 7, 17 (2020); https://doi.org/10.1680/jenge.18.00027.
  • Q. WANG et al., “Cracking and Sealing Behavior of the Compacted Bentonite upon Technological Voids Filling,” Eng. Geol., 292, 106244 (2021); https://doi.org/10.1016/j.enggeo.2021.106244.
  • Y. G. CHEN et al., “Influence of Dry Density and Water Salinity on the Swelling Pressure and Hydraulic Conductivity of Compacted GMZ01 Bentonite-Sand Mixtures,” Acta. Geotech., 17, 1879 (2022); https://doi.org/10.1007/s11440-021-01305-7.
  • G. R. SIMMONS and P. BAUMGARTNER, “The Disposal of Canada’s Nuclear Fuel Waste: Engineering for a Disposal Facility,” AECL-10715, COG-93-5, Atomic Energy of Canada Limited (1994); https://www.osti.gov/etdeweb/biblio/22016375.
  • B. ROSBORG and L. WERME, “The Swedish Nuclear Waste Program and the Long-Term Corrosion Behavior of Copper,” J. Nucl. Mater., 379, 142 (2008); https://doi.org/10.1016/j.jnucmat.2008.06.025.
  • C. S. KIM et al., “Clay-Based Pellets for Use in Tunnel Backfill and as Gap Fill in a Deep Geological Repository: Characterisation of Thermal-Mechanical Properties,” Nuclear Waste Management Organisation, Toronto, Ontario, Canada (2012).
  • H. S. CARSLAW and J. C. JAEGER, Conduction of Heat in Solids, 2nd ed. Oxford University Press, Oxford, United Kingdom (1959).
  • A. HAUTOJÄRVI, “Effects on Fuel Burn-Up and Cooling Periods on Thermal Responses in a Repository for Spent Nuclear Fuel,” YJT-87-21, Posiva OY (1987).
  • K. IKONEN, “Thermal Analysis of Repository for Spent EPR-Type Fuel,” Posiva Report POSIVA 2005-06, Posiva Oy (2005).
  • H. HÖKMARK, M. LÖNNQVIST, and O. KRISTENSSON, “Strategy for Thermal Dimensioning of the Final Repository for Spent Nuclear Fuel,” SKB R-09-04, Svensk Kärnbränslehantering AB (2009).
  • X. Y. ZHOU, D. A. SUN, and Y. F. XU, “A New Thermal Analysis Model with Three Heat Conduction Layers in the Nuclear Waste Repository,” Nucl. Eng. Des., 371, 110929 (2021); https://doi.org/10.1016/j.nucengdes.2020.110929.
  • K. S. CRUMP, “Numerical Inversion of Laplace Transforms Using a Fourier Series Approximation,” J. ACM, 23, 1, 89 (1976); https://doi.org/10.1145/321921.321931.
  • R. IBRAHIM, A. BUIJS, and J. LUXAT, “Evaluation of the Container Spacing and Criticality Safety of Spent Plutonium-Thorium Nuclear Fuel,” Ann. Nucl. Energy., 172, 109056 (2022); https://doi.org/10.1016/j.anucene.2022.109056.
  • X. XU et al., “Validation of the Fully-Analytical Solution with Temperature Superposition for the Nuclear Waste Repository,” Nucl. Eng. Des., 409, 112367 (2023); https://doi.org/10.1016/j.nucengdes.2023.112367.
  • M. ANTTILA, “Radioactive Characteristics of the Spent Fuel of the Finnish Nuclear Power Plants,” Posiva Report POSIVA 2005-71, Posiva Oy (2005).
  • L. Q. HE, X. Y. ZHOU, and D. A. SUN, “Fully Analytical Solution in Time and Space Domains on Temperature in Multi-Barrier Nuclear Waste Repository,” Comput. Geotech., 154, 105164 (2023); https://doi.org/10.1016/j.compgeo.2022.105164.
  • I. KUKKONEN and A. LINDBERG, “Working Report 98-09 e Thermal Properties of Rocks at the Investigation Sites: Measured and Calculated Thermal Conductivity, Specific Heat Capacity and Thermal Diffusivity,” (2000).
  • L. BÖRGESSON, A. FREDRIKSON, and L. E. JOHANNESSON, “Heat Conductivity of Buffer Materials,” SKB TR 94-29, Svensk Kärnbränslehantering AB (1994).
  • H. KIVIKOSKI, I. HEIMONEN, and H. HYTTINEN, “Bentonite Pellet Thermal Conductivity Techniques and Measurements,” Posiva Working Report POSIVA 2015-09, Posiva Oy (2015).
  • D. D. E. BRUYN and S. LABAT, “The Second Phase of ATLAS: The Continuation of a Running THM Test in the HADES Underground Research Facility at Mol,” Eng. Geol., 64, 309 (2002); https://doi.org/10.1016/S0013-7952(01)00109-0.
  • B. FRANCOIS, L. LALOUI, and C. LAURENT, “Thermo-Hydro-Mechanical Simulation of ATLAS in situ Large Scale Test in Boom Clay,” Comput. Geotech., 36, 626 (2009); https://doi.org/10.1016/j.compgeo.2008.09.004.
  • G. J. CHEN et al., “ATLAS III in situ Heating Test in Boom Clay: Field Data, Observation and Interpretation,” Comput. Geotech., 38, 683 (2011); https://doi.org/10.1016/j.compgeo.2011.04.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.