0
Views
0
CrossRef citations to date
0
Altmetric
Select papers from the special issue on Microreactor Challenges

High-Fidelity Multiphysics Modeling of a Heat Pipe Microreactor Using BlueCrab

ORCID Icon, , , , , , & show all
Received 29 Apr 2024, Accepted 25 Jun 2024, Published online: 05 Aug 2024

References

  • C. R. STANEK, “Overview of DOE-NE NEAMS Program,” U.S. Department of Energy Office of Nuclear Energy; https://www.osti.gov/biblio/1501761 (2019).
  • N. E. STAUFF et al., “Multiphysics Analysis of Load Following and Safety Transients for MicroReactors,” ANL/NEAMS-22/1, Argonne National Laboratory (Sep. 30, 2022).
  • N. STAUFF et al., “High-Fidelity Multiphysics Load Following and Accidental Transient Modeling of Microreactors Using NEAMS Tools,” ANL/NEAMS-23/4, Argonne National Laboratory (Sep. 30, 2023).
  • G. L. GIUDICELLI et al., “The Virtual Test Bed (VTB) Repository: A Library of Reference Reactor Models Using NEAMS Tools,” Nucl. Sci. Eng., 197, 2217 (2023); https://doi.org/10.1080/00295639.2022.2142440.
  • N. STAUFF and Y. MIAO, “VTB - MRAD”; https://mooseframework.inl.gov/virtual_test_bed/microreactors/mrad/index.html (2023).
  • C. H. LEE et al., “Griffin Software Development Plan,” ANL/NSE-21/23, INL/EXT-21-63185, Argonne National Laboratory and Idaho National Laboratory (2021).
  • R. L. WILLIAMSON et al., “BISON: A Flexible Code for Advanced Simulation of the Performance of Multiple Nuclear Fuel Forms,” Nucl. Technol., 207, 954 (2021); https://doi.org/10.1080/00295450.2020.1836940.
  • J. E. HANSEL et al., “Sockeye Theory Manual,” INL/EXT-19-54395, Idaho National Laboratory (Mar. 2020).
  • C. MATTHEWS, A. SHIVPRASAD, and M. COOPER, “Metal Hydride Simulations Using SWIFT,” LA-UR-21-27538, Los Alamos National Laboratory (July 2021).
  • A. D. LINDSAY et al., “2.0 - MOOSE: Enabling Massively Parallel Multiphysics Simulation,” SoftwareX, 20, 101202 (2022); https://doi.org/10.1016/j.softx.2022.101202.
  • “NRC Non-Light Water Reactor (Non-LWR) Vision and Strategy, Volume 1—Computer Code Suite for Non-LWR Plant Systems Analysis,” U.S. Nuclear Regulatory Commission (Jan. 31, 2020).
  • C. MATTHEWS et al., “Coupled Multiphysics Simulations of Heat Pipe Microreactors Using DireWolf,” Nucl. Technol., 207, 7, 1142 (2021); https://doi.org/10.1080/00295450.2021.1906474.
  • M. J. JEONG, “Multiphysics Analysis of Heat Pipe Cooled Microreactor Core with Adjusted Heat Sink Temperature for Thermal Stress Reduction Using OpenFOAM Coupled with Neutronics and Heat Pipe Code,” Front. Energy Res., 11 (2023); https://doi.org/10.3389/fenrg.2023.1213000.
  • C. H. LEE, Y. S. JUNG, and H. K. CHO, “Micro Reactor Simulation Using the PROTEUS Suite in FY19,” ANL/NSE-19/33, Argonne National Laboratory (2019).
  • G. HU et al., “Multiphysics Simulations of Heat Pipe Micro Reactor,” ANL/NSE-19/25, Argonne National Laboratory.
  • A. HSIEH, “Development of Transient Analysis Capability of PROTEUS-MOC for Micro-Reactor Applications,” Dissertation, University of Michigan (2022).
  • T. SIARAFERAS, “Steady-State and Transient Analysis of a Heat-Pipe Cooled Micro-Reactor Using the DireWolf Code Suite,” Proc. Int. Conf. Physics of Reactors (PHYSOR 2024), San Francisco, California, April 21–24, 2024, American Nuclear Society (2024).
  • W. R. KENDRICK and B. FORGET, “Preliminary Neutronic-Thermal-Mechanical Coupling of a Small Heat-Pipe Reactor Using OpenMC and MOOSE,” Proc. Int. Conf. Physics of Reactors (PHYSOR 2022), Pittsburgh, Pennsylvania, May 15–20, 2022, American Nuclear Society (2022).
  • M. ELTAWILA, A. NOVAK, and Y. MIAO, “Coupled Multiphysics Modeling of Heat Pipe Microreactors Using Cardinal, BISON, and Sockeye,” Proc. Int. Conf. Physics of Reactors (PHYSOR 2024), San Francisco, California, April 21–24, 2024, American Nuclear Society (2024).
  • K. NI et al., “Assessment of Griffin Cross-Section Interpolation Capability on TRISO-Fueled Heat-Pipe Micro-Reactor,” Proc. Int. Conf. Physics of Reactors (PHYSOR 2022), Pittsburgh, Pennsylvania, May 15–20, 2022, American Nuclear Society (2022).
  • N. STAUFF et al., “Versatile Heat Transfer Module,” ANL/NSE-22/3, Argonne National Laboratory (Jan. 28, 2022).
  • S. TERLIZZI and V. LABOURÉ, “Asymptotic Hydrogen Redistribution Analysis in Yttrium-Hydride-Moderated Heat-Pipe-Cooled Microreactors Using DireWolf,” Ann. Nucl. Energy, 186, 109735 (2023); https://doi.org/10.1016/j.anucene.2023.109735.
  • T. M. PANDYA et al., “Two-Step Neutronics Calculations with Shift and Griffin for Advanced Reactor Systems,” Ann. Nucl. Energy, 173, 109131 (2022); https://doi.org/10.1016/j.anucene.2022.109131.
  • J. ORTENSI et al., “A Newton Solution for the Superhomogenization Method: The PJFNK-SPH,” Ann. Nucl. Energy, 111, 579 (2018); https://doi.org/10.1016/j.anucene.2017.09.027.
  • A. YAMAMOTO et al., “Improvement of the SPH Method for Pin-by-Pin Core Calculations,” J. Nucl. Sci. Technol., 41, 12, 1155 (2004); https://doi.org/10.1080/18811248.2004.9726344.
  • C. H. LEE et al., “Improved Fast Reactor Capability of Griffin in FY23,” ANL/NSE-23/73, Argonne National Laboratory (2023).
  • N. E. STAUFF et al., “Detailed Analyses of a TRISO-Fueled Microreactor,” ANL/NEAMS-21/3, Argonne National Laboratory (Sep. 30, 2021).
  • Z. PRINCE and V. LABOURÉ, “Micro Reactor Drum Rotation,” Idaho National Laboratory; https://mooseframework.inl.gov/virtual_test_bed/microreactors/drum_rotation/index.html ( current as of Mar. 26 2024).
  • J. LEPPANEN, “Serpent—A Continuous-Energy Monte Carlo Reactor Physics Burnup Calculation Code: User’s Manual,” VTT Technical Research Centre of Finland (2015); https://serpent.vtt.fi/serpent/download/Serpent_manual.pdf.
  • C. PERMANN, “MOOSE: Enabling Massively Parallel Multiphysics Simulation,” SoftwareX, 11, 100430 (2020).
  • E. SHEMON et al., “MOOSE Reactor Module: An Open-Source Capability for Meshing Nuclear Reactor Geometries,” Nucl. Sci. Eng., 197, 8, 1656 (2023); https://doi.org/10.1080/00295639.2022.2149231.
  • Y. MIAO et al., “Advanced Moderation Module for High-Temperature Micro-Reactor Applications,” ANL/CFCT-20/19, Argonne National Laboratory (2020).
  • J. E. HANSEL, “Heat Pipe Modeling Using Sockeye,” INL/MIS-23-73932-Revision-0, Idaho National Laboratory (2023).
  • J. E. HANSEL et al., “Sockeye: A One-Dimensional, Two-Phase, Compressible Flow Heat Pipe Application,” Nucl. Technol., 207, 7, 1096 (2021); https://doi.org/10.1080/00295450.2020.1861879.
  • N. E. STAUFF et al., “Preliminary Applications of NEAMS Codes for Multiphysics Modeling of a Heat Pipe Microreactor,” Trans. Am. Nucl. Soc., 124, 21 (2021).
  • Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data,” International Atomic Energy Agency (2008).
  • S. MURTHY, “Elastic Properties of Boron Carbide,” J. Mater. Sci. Lett., 4, 603 (1985); https://doi.org/10.1007/BF00720044.
  • P. HIDNERT and W. T. SWEENEY, “Thermal Expansion of Beryllium and Aluminum-Beryllium Alloys,” U.S. Department of Commerce, Bureau of Standards (1927).
  • E. A. BRANDES and G. B. BROOK, Smithells Metals Reference Book, Elsevier Science (2013).
  • Y. S. TOULOUKIAN, Thermophysical Properties of High Temperature Solid Materials, Vol. 1, Purdue University (1967).
  • S. MALANG et al., “Status Report, KfK Contribution to the Development of DEMO-Relevant Test Blankets for NET/ITER,” Kernforschungszentrum Karlsruhe (1991).
  • M. A. ABDOU et al., “Modeling, Analysis and Experiments for Fusion Nuclear Technology: FNT Progress Report: Modeling and FINESSE,” University of California, Los Angeles, Department of Mechanical, Aerospace and Nuclear Engineering (1987).
  • J. M. W. CHASE et al., “JANAF Thermochemical Tables Third Edition,” J. Phys. Chem. Ref. Data, 14, Suppl. 1 (1985).
  • A. A. ABDELHAMEED, K. S. CHAUDRI, and Y. KIM, “Three-D Core Multiphysics for Simulating Passively Autonomous Power Maneuvering in Soluble-Boron-Free SMR with Helical Steam Generator,” Nucl. Eng. Technol., 52, 12, 2699 (2020); https://doi.org/10.1016/j.net.2020.05.009.
  • D. I. POSTON et al., “Results of the KRUSTY Nuclear System Test,” Nucl. Technol., 206, Suppl. 1, S89 (2020); https://doi.org/10.1080/00295450.2020.1730673.
  • Y. CAO et al., “Multiphysics Simulations of the KRUSTY Criticality Experiment Using BlueCrab,” Proc. Int. Conf. Physics of Reactors (PHYSOR 2024), San Francisco, California, April 21–24, 2024, American Nuclear Society (2024).
  • “Snap 8 Summary Report,” North American Aviation (1973); https://www.osti.gov/biblio/4393793.
  • I. NAUPA et al., “Verification of the Serpent- Griffin Workflow using the SNAP 8 Experimental Reactor,” (2023); https://www.researchgate.net/publication/368330161_Validation_of_SNAP8_Criticality_Configuration_Experiments_Using_SERPENT.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.