29
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Gene transfer: A review of methods and applications

Pages 335-347 | Accepted 28 May 1998, Published online: 06 Jul 2009

References

  • Orkin SH, Motulsky AG. NIH Proceedings-Dec 95. Report and recommendations of the panel to assess the NIH investment in research on gene therapy. 1995
  • Wivel NA, Walters L. Germ-line gene modification and disease prevention: some medical and ethical perspectives. Science 1993; 262: 533–537
  • Raven PH, Johnson JB. Biology2nd edn. Times Mirror/Mosby College Publishing, St Louis 1989, The genetic material.
  • Avery OT, Macleod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J Exp Med 1944; 79: 137–158
  • Watson JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AM. Molecular Biology of the Gene4th ed. The Benjamin/Cummings Publishing Company Inc. 1988, The extraordinary diversity of eukaryotic viruses.
  • Temin HM. The Retroviradae. Plenum Press, New York 1992, Origin and general nature of retroviruses.
  • Coffin JM. Virology. Raven Press Ltd, New York 1990, Retroviradae and their replication.
  • Kavanaugh, MP, Miller, DG, Zhang, W, Law, W, Kozak, SL, Kabat, D, et al. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc Natl Acad Sci USA 1994; 91: 7071–7075
  • Van Zeul, M, Johann, SV, Closs, E, Cunningham, J, Eddy, R, Shows, TB, et al. A human amphotrophic retrovirus receptor is a second member of the gibbon ape leukemia virus receptor family. Proc Natl Acad Sci USA 1994; 91: 1168–1172
  • Miller DG, Adam MA, Miller AD. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 1990; 4239-4242
  • Porter, CD, Collins, MKL, Tailor, CS, Parkar, MH, Cosset, F, Weiss, RA, et al. Comparison of efficiency of infection of human gene therapy target cells via four different retroviral receptors. Hum Gene Ther 1996; 7: 913–919
  • Gelinas C, Temin HM. Nondefective spleen necrosis virus-derived vectors define the upper size limit for packaging reticuloendotheliosis viruses. Proc Natl Acad Sci USA 1986; 83: 9211–9215
  • Donahue, RE, Kessler, SW, Bodine, DM, McDonagh, K, Dunbar, CE, Goodman, S, et al. Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J Exp Med 1992; 176: 1125–1135
  • Trapnell BC, Gorziglia M. Gene therapy using adenoviral vectors. Curr Opin Biotechnol 1994; 5: 617–625
  • Kremer EJ, Perricaudet M. Adenovirus and adeno-associated virus mediated gene transfer. Br Med Bull 1995; 51: 31–44
  • Ginsberg HS. The Adenoviruses. Plenum, New York 1984
  • Chroboczek J, Bieber F, Jacrot B. The sequence of the genome of adenovirus type 5 and its comparison with the genome of adenovirus type 2. Virology 1992; 186: 280–285
  • Graham FL, Smiley J, Russell WC. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977; 36: 59–72
  • Bett AJ, Prevec L, Graham FL. Packaging capacity and stability of human adenovirus type 5 vectors. J Virol 1993; 67: 5911–5921
  • Bett AJ, Haddara W, Prevec L, Graham FL. An efficient and flexible system for construction of adenovirus vectors with insertions and deletions in early regions 1 and 3. Proc Natl Acad Sci USA 1994; 91: 8802–8806
  • Parks RJ, Chen L, Anton M, Sankar U, Rudnicki M, Graham FL. A helper-dependent adenovirus vector system: removal of the helper virus by Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci USA 1996; 93: 13565–13570
  • Michael, SI, Douglas, JT, Miller, CR, Krasnykh, V, Hong, JS, Engler, JA, et al. Strategies to accomplish targeted gene delivery implying tropism-modified recombinant adenoviral vectors. Cancer Gene Ther 1995; 321–321
  • Wickham, TJ, Lee, GM, Titus, JA, Sconocchia, G, Bakas, T, Kovesdi, I, et al. Targeted adenovirus-mediated gene delivery to T cells via CD3. J Virol 1997; 71: 7663–7669
  • Wickham TJ, Carrion ME, Kovesdi I. Targeting of adenovirus penton base to new receptors through replacement of its RGD motif with other receptor-specific peptide motifs. Gene Ther 1995; 2: 750–756
  • Neve RL, Geller AJ. A defective herpes simplex virus vector system for gene delivery into the brain: comparison with alternative gene delivery systems and usefulness for gene therapy. Clin Neurosci 1996; 3: 262–267
  • Turner SL, Jenkins FJ. The roles of herpes simplex virus in neuroscience. J Neurovirol 1997; 3: 110–125
  • Latchman DS. Herpes simplex virus vector for gene therapy. Mol Biotechnol 1994; 2: 179–195
  • Toneguzzo F, Keating A. Stable expression of selectable genes introduced into human hematopoietic stem cells by electric field mediated DNA transfer. Proc Natl Acad Sci USA 1986; 83: 3496–3499
  • Wu D, Keating A. Engraftment of donor-derived bone marrow stromal cells. Exp Hematol 1991; 19: 485–485
  • Fechheimer M, Boylan JF, Parker S, Sisken JE, Patel GL, Zimmer SG. Transfection of mammalian cells with plasmid DNA by scrape loading and sonicating loading. Proc Natl Acad Sci USA 1987; 84: 8463–8467
  • MacNeil PL, Warder E. Glass beads load macromolecules into living cells. J Cell Sci 1987; 88: 669–678
  • Mathews KE, Mills GB, Horsfall W, Hack N, Skorecki K, Keating A. Bead transfection: rapid and efficient gene transfer into marrow stromal and other adherent mammalian cells. Exp Hematol 1993; 21: 697–702
  • Mathews KE, Keating A. Gene therapy with physical methods of gene transfer. Transfusion Sci 1996; 17: 29–34
  • Ratajczak MZ, Gewirtz AM. The biology of hematopoietic stem cells. Semin Oncol 1995; 22: 210–217
  • Ogawa M. Differentiation and proliferation of hematopoietic stem cells. Blood 1993; 81: 2844–2853
  • Orlic D, Bodine DM. What defines a pluripotent hematopoietic stem cell (PHSC): will the real PHSC please stand up!. Blood 1994; 84: 3991–3994
  • Salmons B, Gupta C. Targeting retroviral vectors for gene therapy. Hum Gene Ther 1993; 4: 129–141
  • Carter, RF, Abrams-Ogg, ACG, Dick, JE, Kruth, SA, Valli, V, Kamel-Reid, S, et al. Autologous transplantation of canine long-term marrow culture cells genetically marked by retroviral vectors. Blood 1992; 79: 356–364
  • Sekhar M, Kotani H, Doren S, Agarwal R, McGarrity GJ, Dunbar CE. Retroviral transduction of CD34-enriched hematopoietic progenitor cells under serum-free conditions. Hum Gene Ther 1996; 7: 33–38
  • Hatzfeld A, Batard P, Panterne B, Taieb F, Hatzfeld J. Increased stable retroviral gene transfer in early hematopoietic progenitors released from quiescence. Hum Gene Ther 1996; 7: 207–213
  • Dube, ID, Kruth, S, Abrams-Ogg, A, Kamel-Reid, S, Lutzko, C, Nanji, S, et al. Preclinical assessment of human hematopoietic cell transduction in long-term marrow cultures. Hum Gene Ther 1997; 7: 2089–2100
  • Stewart, AK, Prince, HM, Cappe, D, Chu, P, Lutzko, C, Sutherland, DR, et al. In vitro maintenance and retroviral transduction of human myeloma cells in long-term marrow cultures. Cancer Gene Ther 1997; 4: 148–156
  • Mitani K, Graham FL, Caskey CT. Transduction of human bone marrow by adenoviral vector. Hum Gene Ther 1994; 5: 941–948
  • Neering SJ, Hardy SF, Minamoto D, Spratt SK, Jordan CT. Transduction of primitive human hematopoietic cells with recombinant adenovirus vectors. Blood 1996; 88: 1147–1155
  • Prince HM, Dessureault S, Gallinger S, Graham F, Sutherland DR, Stewart AK. Adenoviral mediated B7 gene transduction of malignant human plasma cells. Exp Hematol 1998; 26: 27–36
  • Miller, A.D., Skotzko, MJ, Rhoades, K, Belldegrun, AS, Tso, CL, Kaboo, R, et al. Simultaneous use of two retroviral vectors in human gene marking trials: feasibility and potential applications. Hum Gene Ther 1992; 3: 619–624
  • Dick JE, Kamel-Reid S, Murdoch B, Doedens M. Gene transfer into normal human hematopoietic cells using in vitro and in vivo assays. Blood 1991; 78: 624–634
  • Brenner, MK, Rill, DR, Holladay, MS, Heslop, HE, Moen, RC, Buschle, M, et al. Gene marking to determine whether autologous marrow infusion restores long-term haematopoiesis in cancer patients. Lancet 1993; 342: 1134–1137
  • Dilloo D, Rill DR, Grossmann ME, Leimig T, Brenner M. Gene marking and gene therapy for transplantation medicine. J Hematother 1996; 5: 553–555
  • Brenner, MK, Rill, DR, Moen, RC, Krance, RA, Mirro, J, Jr, Anderson, WF, et al. Gene marking to trace origin of relapse after autologous bone marrow transplantation for acute myelogenous leukemia. Lancet 1993; 341: 85–86
  • Deisseroth, AB, Zu, Z, Claxton, D, Hanania, EG, Fu, S, Ellerson, D, et al. Genetic marking show that Ph+ cells present in autologous transplants of chronic myelogenous leukemia (CML) contribute to relapse after autologous bone marrow in CML. Blood 1994; 83: 3068–3076
  • Brenner, MK, Rill, DR, Moen, RC, Krance, RA, Heslop, HE, Mirodr, J, et al. Gene marking and autologous bone marrow transplant. Annals New York Academy of Sciences 1994; 1: 204–214
  • Rosenberg, SA, Aebersold, P, Conetta, K, Kasid, A, Morgan, RA, Moen, R, et al. Gene transfer into humans-immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. New Engl Med 1990; 323: 601–601
  • Platsoucas CD, Freedman RS. Tumour-infiltrating lymphocytes in gene therapy. Cancer Bull 1993; 45: 118–124
  • Merrouche, Y, Negrier, S, Bain, C, Combaret, V, Mercatello, A, Coronel, B, et al. Clinical application of retroviral gene transfer in oncology: results of a French study with tumor-infiltrating lymphocytes transduced with the gene of resistance to neomycin. J Clin Oncol 1995; 13: 410–418
  • Dunbar, CE, Cottler-Fox, M, O'Shaughnessy, JA, Doren, S, Carter, C, Berenson, R, et al. Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation. Blood 1995; 85: 3048–3057
  • Stewart AK, Prince HM, Dube ID. Background and update to a Phase I trial of stem cell gene marking in multiple myeloma. Transfusion Sci 1995; 17: 175–184
  • Munshi, NC, Ding, LM, Kornbluth, J, Naugler, S, Saylors, R, Iyer, R., et al. Gene therapy strategies for the treatment of multiple myeloma. Blood 1994; 84(Suppl 1)172a–172a
  • Malech, H, Maples, PB, Whiting-Theobald, N, Linton, GF, Sekhsaria, S, Vowells, SJ, et al. Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc Natl Acad Sci USA 1997; 94: 12133–12138
  • >Blaese, RM, Culver, KW, Miller, AD, Carter, CS, Fleisher, T, Clerici, M, et al. T lymphocyte-directed gene therapy for ADA(-) SCID: Initial trial results after 4 years. Science 1995; 270: 475–480
  • Koc ON. Transfer of drug resistance benes into hematopoietic progenitors to improve chemotherapy tolerance. Semin Oncol 1997; 23(Suppl 1)46–65
  • Bertino JR. ‘Turning the tables’—normal marrow resistant to chemotherapy. J Natl Cancer Inst 1990; 82: 1234–1234
  • Thompson AR. Status of gene transfer for haemophilia A and B. Thrombosis Haemostasis 1991; 66: 119–122
  • Brownlee GG. Prospects for gene therapy of haemophilia A and B. Br Med Bull 1995; 51: 91–105
  • Connelly S, Kaleko M. Gene therapy for hemophilia A. Thrombosis Haemostasis 1997; 78: 31–36
  • Dropulic B, Jeang K. Gene therapy for human immunodeficiency virus infection: genetic antiviral strategies and targets for intervention. Hum Gene Ther 1994; 5: 927–939
  • Buchschacher GLJ. Molecular targets of gene transfer therapy for HIV infection. J Am Med Assoc 1993; 269: 2880–2886
  • Lever AM. Gene therapy for HIV infection. Br Med Bull 1995; 51: 149–166
  • Chen S, Bagley J, Marasco WA. Intracellular antibodies as a new class of therapeutic molecules for gene therapy. Hum Gene Ther 1994; 5: 595–601
  • Zier KS, Gansbacher B. The impact of gene therapy on T cell function in cancer. Hum Gene Ther 1995; 6: 1259–1264
  • Pardoll D. Immunotherapy with cytokine gene-transduced tumor cells: the next wave in gene therapy for cancer. Curr Opin Oncol 1992; 4: 1124–1124
  • Urban JL, Schreiber H. Tumor antigens. Annu Rev Immunol 1992; 10: 617–644
  • Boon T, Coulie P, Marchand M, Weynants P, Wolfel T, Brichard V. Important Advances in Oncology. Lippincott, Philadelphia 1994, Chapter 4, Genes coding for tumor rejection antigens: perspectives for specific immunotherapy.
  • Boon T, Cerottini J, Van den Eynde B, van der Bruggen P, Van Pel A. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 1994; 12: 337–365
  • Chen L, Linsley PS, Hellstrom KE. Costimulation of T cells for tumor immunity. Immunol Today 1993; 14: 483–486
  • Janeway CAJ. The T cell receptor as a multicomponent signalling machine: CD4/CD8 corceptors and CD45 in T cell activation. Annu Rev Immunol 1992; 10: 645–674
  • Jenkins MK, Pardoll DM, Mizuguchi J, Quill H, Schwartz RH. T cell responsiveness in vivo and in vitro fine specificity of induction and molecular characterization of the unresponsive state. Immunol Rev 1987; 95: 113–135
  • Salvadori S, Gansbacher B, Wernick I, Tirelli S, Zier K. B7-1 amplifies the response to interleukin-2-secreting tumor vaccines in vivo, but fails to induce a response by naive cells in vitro. Hum Gene Ther 1995; 6: 1299–1306
  • Tepper RI, Mule JJ. Experimental and clinical studies of cytokine gene-modified tumor cells. Hum Gene Ther 1994; 5: 153–164
  • Ellem, KA, O'Rourke, MG, Johnson, GR, Parry, G, Misko, IS, Schmidt, CW, et al. A case report: immune responses and clinical course of the first human use of granulocyte/macrophage-colony-stimulating-factor-transduced autologous melanoma cells for immunotherapy. Cancer Immunol Immunother 1997; 44: 10–20
  • Dranoff, G, Soiffer, R, Lynch, T, Mihm, M, Jung, K, Kolesar, K, et al. A phase I study of vaccination with autologous, irradiated melanoma cell engineered to secrete human granulocyte-macrophage colony stimulating factor. Hum Gene Ther 1997; 8: 111–123
  • Guinan EC, Gribben JG, Boussiotis VA, Freeman GJ, Nadler LM. Pivotal role of the B7: CD28 pathway in transplantation tolerance and tumor immunity. Blood 1994; 84: 3261–3282
  • Chen, L, Ashe, S, Brady, WA, Hellstrom, I, Hellstrom, KE, Ledbetter, JA, et al. Costimulation of antitumor immunity by the B7 counter-receptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 1992; 71: 1093–1102
  • Basker S, Ostrand-Rosenberg S, Nabavi N, Nadler LM, Freeman GJ, Glimcher LH. Constitutive expression of B7 restores immunogenicity of tumor cells expressing truncated major histocompatibility complex class II molecules. Proc Natl Acad Sci USA 1993; 90: 5687–5690
  • Matulonis, UA, Dosiou, C, Lamont, C, Freeman, GJ, Mauch, P, Nadler, LM, et al. Role of B7-1 in mediating an immune response to myeloid leukemia cells. Blood 1995; 85: 2507–2515
  • Chen, L, McGowen, P, Ashe, S, Johnston, J, Li, Y, Hellstrom, I, et al. Tumor immunogenicity determines the effects of B7 costimulation on T cell-mediated tumor immunity. J Exp Med 1994; 179: 523–532
  • Cayeux S, Beck C, Aicher A, Dorken B, Blankenstein T. Tumor cells cotransfected with interleukin-7 and B7.1 genes induce CD25 and CD28 on tumor-infiltrating T lymphocytes and are strong vaccines. Eur J Immunol 1995; 25: 2325–2331
  • Hellstrom KE, Hellstrom I, Linsley PS, Chen L. On the role of costimulation in tumor immunity. Ann NY Acad Sci 1993; 690: 225–230
  • Putzer BM, Hitt M, Muller WJ, Emtage P, Gauldie J, Graham FL. Interleukin 12 and B7-1 costimulatory molecule expressed by an adenovirus vector act synergistically to facilitate tumor regression. Proc Natl Acad Sci USA 1997; 94: 10889–10894
  • Ciudere B, Zitvogel L, Tahara H, Gilles F, Lotze MT, Robbins PD. Improvement of murine gene therapy using IL-12 by tumour cell stably expressing costimulatory molecules of the TNF family. Gene Ther Meet Cold Spring Harbor 1996; 69-#69
  • Ksander BR, Geer D, Podack ER, Chen PW. Tumor cells transfected with B7-1 + IL 12 cDNA induce lasting protective immunity. Cancer Gene Ther 1995; 2: 317–332
  • Cayeux S, Beck C, Dorken B, Blankenstein T. Coexpression of interleukin-4 and B7.1 in murine tumor cells leads to improved tumor rejection and vaccine effect compared to single gene transfectants and a classical adjuvant. Hum Gene Ther 1996; 7: 525–529
  • Katsanis, E, Bausero, M, Panoskaltsis-Mortari, A, Dancisak, BB, Xu, Z, Orchard, PJ, et al. Irradiation of singly and doubly transduced murine neuroblastoma cells expressing B7-1 and producing interferon-gamma reduces their capacity to induce systemic immunity. Cancer Gene Ther 1996; 3: 75–82
  • Albertini MR, Emler CA, Schell K, Tans KJ, King DM, Sheehy MJ. Dual expression of human leukocyte antigen molecules and the B7-1 costimulatory molecule (CD80) on human melanoma cells after particle-mediated gene transfer. Cancer Gene Ther 1996; 3: 192–201
  • Roth, JA, Nguyen, D, Lawrence, DD, Kemp, BL, Carrasco, CH, Ferson, DZ, et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med 1996; 2: 985–991
  • Dilber, MS, Abedi, MR, Bjorkstrand, B, Christenssen, B, Gahrton, G, Xanthopoulos, KG, et al. Suicide gene therapy for plasma cell tumours. Blood 1996; 88: 2192–2200
  • Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM. In vivo gene transfer with retroviral vector producer cells for treatment of experimental brain tumours. Science 1992; 256: 1550–1552
  • Ram, Z, Culver, KW, Oshiro, EM, Viola, JJ, DeVroom, HL, Otto, E, et al. Therapy of malignant brain tumors by intramural implantation of retroviral vector-producing cells. Nat Med 1997; 3: 1354–1361
  • Dunbar CE, Nienhuis AW. Multiple myeloma: new approaches to therapy. J Am Med Assoc 1993; 269: 2412–2416
  • Sporeno, E, Savino, R, Ciapponi, L, Paonessa, G, Cabibbo, A, Lahm, A, et al. Human Interleukin-6 receptor super-antagonists with high potency and wide spectrum on multiple myeloma cells. Blood 1996; 87: 4510–4519
  • Saggio I, Ciapponi L, Savino R, Ciliberto G, Perricaudet M. Adenovirus mediated gene transfer of an IL6 antagonist. Gene Ther Meet Cold Spring Harbor 1996; 270–270
  • Klein B, Xue-Guang Z, Zhao-Yang L, ataille R. Interleukin-6 in human multiple myeloma. Blood 1995; 85: 863–872

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.