26,628
Views
165
CrossRef citations to date
0
Altmetric
Reviews

Seaweed nutrient physiology: application of concepts to aquaculture and bioremediation

ORCID Icon & ORCID Icon
Pages 552-562 | Received 11 Jan 2019, Accepted 21 May 2019, Published online: 11 Sep 2019

References

  • Abreu M.H., Pereira R., Buschmann A.H., Sousa-Pinto I. & Yarish C. 2011a. Nitrogen uptake responses of Gracilaria vermiculophylla (Ohmi) Papenfuss under combined and single addition of nitrate and ammonium. Journal of Experimental Marine Biology and Ecology 407: 190–199. DOI: 10.1016/j.jembe.2011.06.034.
  • Abreu M.H., Pereira R., Yarish C., Buschmann A.H. & Sousa-Pinto I. 2011b. IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 312: 77–87. DOI: 10.1016/j.aquaculture.2010.12.036.
  • Ale M.T., Mikkelsen J.D. & Meyer A.S. 2011. Differential growth response of Ulva lactuca to ammonium and nitrate assimilation. Journal of Applied Phycology 23: 345–351. DOI: 10.1007/s10811-010-9546-2.
  • Barr N.G., Kloeppel A., Rees T.A.V., Scherer C., Taylor R.B. & Wenzel A. 2008. Wave surge increases rates of growth and nutrient uptake in the green seaweed Ulva pertusa maintained at low bulk flow velocities. Aquatic Biology 3: 179–186. DOI: 10.3354/ab00079.
  • Barr N.G., Tijsen R.J. & Rees T.A.V. 2004. Contrasting effects of methionine sulfoximine on uptake and assimilation of ammonium in Ulva intestinalis (Chlorophyceae). Journal of Phycology 40: 697–704. DOI: 10.1111/j.1529-8817.2004.04004.x.
  • Bell E.C. 1993. Photosynthetic response to temperature and desiccation of the intertidal alga Mastocarpus papillatus. Marine Biology 117: 337–346. DOI: 10.1007/BF00345679.
  • Bird K.T. 1988. Agar production and quality from Gracilaria sp. strain G-16: effects of environmental factors. Botanica Marina 31: 33–39. DOI: 10.1515/botm.1988.31.1.33.
  • Bird K.T., Hanisak M.D. & Ryther J. 1981. Chemical quality and production of agars extracted from Gracilaria tikvahiae grown in different nitrogen enrichment conditions. Botanica Marina 24: 441–444. DOI: 10.1515/botm.1981.24.8.441.
  • Björk M., Axelsson L. & Beer S. 2004. Why is Ulva intestinalis the only macroalga inhabiting isolated rockpools along the Swedish Atlantic coast? Marine Ecology Progress Series 284: 109–116. DOI: 10.3354/meps284109.
  • Blouin N., Xiugeng F., Peng J., Yarish C. & Brawley S.H. 2007. Seeding nets with neutral spores of the red alga Porphyra umbilicalis (L.) Kützing for use in integrated multi-trophic aquaculture (IMTA). Aquaculture 270: 77–91. DOI: 10.1016/j.aquaculture.2007.03.002.
  • Boyd P.W. & Hurd C.L. 2009. Ocean Nutrients. In: Surface ocean:lower atmosphere processes (Ed. by C. Le Quéré & E.S. Saltzman), pp. 36–97. American Geophysical Union, Washington D.C., USA.
  • Bracken M.E.S. & Stachowic J.J. 2006. Seaweed diversity enhances nitrogen uptake via complementary use of nitrate and ammonium. Ecology 87: 2397–2403. DOI: 10.1890/0012-9658(2006)87[2397:SDENUV]2.0.CO;2.
  • Briggs C.J., Adam T.C., Holbrook S.J. & Schmitt R.J. 2018. Macroalgae size refuge from herbivory promotes alternative stable states on coral reefs. PLoS ONE 13(9): e0202273. DOI: 10.1371/journal.pone.0202273.
  • Britto D.T. & Kronzucker H.J. 2002. NH4+ toxicity in higher plants: a critical review. Journal of Plant Physiology 159: 567–584. DOI: 10.1078/0176-1617-0774.
  • Buck B.H., Nevejan N., Wille M., Chambers M.D. & Chopin T. 2017. Offshore and multi-use aquaculture with extractive species: seaweeds and bivalves. In: Aquaculture perspective of multi-use sites in the open ocean (Ed. by B. Buck & R. Langan), pp. 23–69. Springer, Cham, Switzerland.
  • Burritt D.J., Larkindale J. & Hurd C.L. 2002. Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following desiccation. Planta 215: 829–838. DOI: 10.1007/s00425-002-0805-6.
  • Buschmann A.H., Hernández-González M.C., Aranda C., Chopin T., Neori A., Halling C. & Troell M. 2008a. Mariculture waste management. Ecological Engineering 3: 2211–2217.
  • Buschmann A.H., Varela D.A., Hernández-González M.C. & Huovinen P. 2008b. Opportunities and challenges for the development of an integrated seaweed-based aquaculture activity in Chile: determining the physiological capabilities of Macrocystis and Gracilaria as biofilters. Journal of Applied Phycology 20: 571–577. DOI: 10.1007/s10811-007-9297-x.
  • Chopin T., Buschmann A.H., Halling C., Troell M., Kautsky N., Neori A., Kraemer G.P., Zertuche-Gonzalez J.A., Yarish C. & Neefus C. 2001. Integrating seaweeds into marine aquaculture systems: a key toward sustainability. Journal of Phycology 37: 975–986. DOI: 10.1046/j.1529-8817.2001.01137.x.
  • Chopin T., Gallant T. & Davison I. 1995. Phosphorus and nitrogen nutrition in Chondrus crispus (Rhodophyta): effects on total phosphorus and nitrogen content, carrageenan production, and photosynthetic pigments and metabolism. Journal of Phycology 31: 283–293. DOI: 10.1111/j.0022-3646.1995.00283.x.
  • Chopin T., Hanisak M.D., Koehn F.E., Mollion J. & Moreau S. 1990. Studies on carrageenans and effects of seawater phosphorus concentration on carrageenan content and growth of Agardhiella subulata (C. Agardh) Kraft and Wynne (Rhodophyceae, Solieriaceae). Journal of Applied Phycology 2: 3–16. DOI: 10.1007/BF02179764.
  • Cohen R.A. & Fong P. 2004. Physiological responses of a bloom-forming green macroalga to short-term change in salinity, nutrients, and light help explain its ecological success. Estuaries 27: 209–216. DOI: 10.1007/BF02803378.
  • Collos Y. & Harrison P.J. 2014. Acclimation and toxicity of high ammonium concentrations to unicellular algae. Marine Pollution Bulletin 80: 8–23. DOI: 10.1016/j.marpolbul.2014.01.006.
  • Corey P., Kim J.K., Duston J. & Garbary D.J. 2014. Growth and nutrient uptake by Palmaria palmata integrated with Atlantic halibut in a land-based aquaculture system. Algae 29: 35–45. DOI: 10.4490/algae.2014.29.1.035.
  • Cornwall C.E., Revill A.T. & Hurd C.L. 2015. High prevalence of diffusive uptake of CO2 by macroalgae in a temperate subtidal ecosystem. Photosynthesis Research 124: 181–190. DOI: 10.1007/s11120-015-0114-0.
  • DeBoer J.A., Guigli H.J., Israel T.L. & D’Elia C.F. 1978. Nutritional studies of two red algae. I. Growth rate as a function of nitrogen source and concentration. Journal of Phycology 14: 262–266. DOI: 10.1111/j.1529-8817.1978.tb00296.x.
  • Domingues B., Abreue M.H. & Sousa-Pinto I. 2015. On the bioremediation efficiency of Mastocarpus stellatus (Stackhouse) Guiry, in an integrated multi-trophic aquaculture system. Journal of Applied Phycology 27: 1289–1295. DOI: 10.1007/s10811-014-0414-3.
  • Dring M.J. & Brown F.A. 1982. Photosynthesis of intertidal brown algae during and after periods of emersion– A renewed search for phycological causes of zonation. Marine Ecology Progress Series 8: 301–308. DOI: 10.3354/meps008301.
  • Duarte C.M. 1992. Nutrient concentration of aquatic plants: patterns across species. Limnology and Oceanography 37: 882–889. DOI: 10.4319/lo.1992.37.4.0882.
  • Dy D.T. & Yap H.T. 2001. Surge ammonium uptake of the cultured seaweed, Kappaphycus alvarezii (Doty) Doty (Rhodophyta: gigartinales). Journal of Experimental Marine Biology and Ecology 265: 89–100. DOI: 10.1016/S0022-0981(01)00325-2.
  • Fernández P.A., Hurd C.L. & Roleda M.Y. 2014. Bicarbonate uptake via an anion exchange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH. Journal of Phycology 50: 998–1008. DOI: 10.1111/jpy.12247.
  • Fernández P.A., Leal P.P., & Henríquez L.A. 2019. Co-culture in marine farms: macroalgae can act as chemical refuge for shell-forming molluscs under an ocean acidifi cation scenario. Phycologia 58: 542–551. DOI: 10.1080/00318884.2019.1628576.
  • Fernández P.A., Roleda M.Y., Leal P.P., Hepburn C.D. & Hurd C.L. 2017b. Tissue nitrogen status does not alter the physiological responses of Macrocystis pyrifera to ocean acidification. Marine Biology 164: 177. DOI: 10.1007/s00227-017-3204-z.
  • Fernández P.A., Roleda M.Y., Leal P.P. & Hurd C.L. 2017a. Seawater pH, and not inorganic nitrogen source, affects pH at the blade surface of Macrocystis pyrifera: implications for responses of the giant kelp to future oceanic conditions. Physiologia Plantarum 159: 107–119. DOI: 10.1111/ppl.2017.159.issue-1.
  • Fong P., Boyer K.E., Desmond J.S. & Zedler J.B. 1996. Salinity stress, nitrogen competition, and facilitation: what controls seasonal succession of two opportunistic green macroalgae? Journal of Experimental Marine Biology and Ecology 206: 203–221. DOI: 10.1016/S0022-0981(96)02630-5.
  • Food and Agriculture Organization. 2005. Cultured Aquatic Species Information Programme. Porphyra spp. In: FAO fisheries and aquaculture department [online] (Ed. by J. Chen & P. Xu), Rome, Italy. Updated 18 February 2005. http://www.fao.org/fishery/culturedspecies/Porphyra_spp/en; searched on 08 June 2018.
  • Gao X., Agatsuma Y. & Taniguchi K. 2013. Effect of nitrate fertilization of gametophytes of the kelp Undaria pinnatifida on growth and maturation of the sporophytes cultivated in Matsushima Bay, northern Honshu, Japan. Aquaculture International 21: 53–64. DOI: 10.1007/s10499-012-9533-5.
  • Gao Z., Xu D., Meng C., Zhang X., Wang Y., Li D., Zhou J., Zhuang Z. & Ye N. 2014. The green tide-forming macroalga Ulva linza outcompetes the red macroalga Gracilaria lemaneiformis via allelopathy and fast nutrients uptake. Aquatic Ecology 48: 53–62. DOI: 10.1007/s10452-013-9465-9.
  • Gordillo F.J.L. 2012. Environment and algal nutrition. In: Seaweed biology: novel insights into ecophysiology, ecology and utilization (Ed. by C. Wiencke & K. Bischof), pp. 67–86. Springer, Heidelberg, Germany.
  • Gordillo F.J.L., Dring M.J. & Savidge G. 2002. Nitrate and phosphate uptake characteristics of three species of brown algae cultured at low salinity. Marine Ecology Progress Series 234: 111–118. DOI: 10.3354/meps234111.
  • Gordillo F.J.L., Niell F.X. & Figueroa F.L. 2001. Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213: 64–70. DOI: 10.1007/s004250000468.
  • Haines K.C. & Wheeler P.A. 1978. Ammonium and nitrate uptake by the marine macrophytes Hypnea musciformis (Rhodophyta) and Macrocystis pyrifera (Phaeophyta). Journal of Phycology 14: 319–324. DOI: 10.1111/j.1529-8817.1978.tb00305.x.
  • Hanisak M.D. 1979. Nitrogen limitation of Codium fragile subsp. tomentosoides as determined by tissue analysis. Marine Biology 50: 333–337. DOI: 10.1007/BF00387010.
  • Hanisak M.D. & Harlin M.M. 1978. Uptake of inorganic nitrogen by Codium fragile subsp. tomentosoides (Chlorophyta). Journal of Phycology 14: 450–454. DOI: 10.1111/j.1529-8817.1978.tb02467.x.
  • Harlin M.M. & Craigie J.S. 1978. Nitrate uptake by Laminaria longricruris (Phaeophyceae). Journal of Phycology 14: 464–467. DOI: 10.1111/j.1529-8817.1978.tb02470.x.
  • Harrison P.J. & Druehl L.D. 1982. Nutrient uptake and growth in the Laminariales and other macrophytes: a consideration of methods. In: Synthetic and degradative processes in marine macrophytes (Ed. by L.M. Srivastava), pp. 99–120. Walter de Gruyter, Berlin, New York, USA.
  • Harrison P.J., Druehl L.D., Lloyd K.E. & Thompson P.A. 1986. Nitrogen uptake kinetics in three year-classes of Laminaria groenlandica (Laminariales: phaeophyta). Marine Biology 93: 29–35. DOI: 10.1007/BF00428652.
  • Harrison P.J. & Hurd C.L. 2001. Nutrient physiology of seaweeds: application of concepts to aquaculture. Cahiers de Biologie Marine 42: 71–82.
  • Hepburn C.D., Frew R.D. & Hurd C.L. 2012. Uptake and transport of nitrogen derived from sessile epifauna in the giant kelp Macrocystis pyrifera. Aquatic Biology 14: 121–128. DOI: 10.3354/ab00382.
  • Hepburn C.D, Holborow J.D, Wing S.R, Frew R.D, & Hurd C.L. 2007. Exposure to waves enhances the growth rate and nitrogen status of the giant kelp Macrocystis pyrifera. Marine Ecology Progress Series 339: 99–108. DOI: 10.3354/meps339099.
  • Hepburn C.D. & Hurd C.L. 2005. Conditional mutualism between giant kelp Macrocystis pyrifera and colonial epifauna. Marine Ecology Progress Series 302: 37–48. DOI: 10.3354/meps302037.
  • Hepburn C.D., Pritchard D.W., Cornwall C.E., McLeod R.J., Beardall J., Raven J.A. & Hurd C.L. 2011. Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Global Change Biology 17: 2488–2497. DOI: 10.1111/j.1365-2486.2011.02411.x.
  • Huppe H.C. & Turpin D.H. 1994. Integration of carbon and nitrogen metabolism in plant and algal cells. Annual Review of Plant Physiology and Plant Molecular Biology 45: 577–607. DOI: 10.1146/annurev.pp.45.060194.003045.
  • Hurd C.L. 2000. Water motion, marine macroalgal physiology, and production. Journal of Phycology 36: 453–472. DOI: 10.1046/j.1529-8817.2000.99139.x.
  • Hurd C.L. 2017. Shaken and stirred: the fundamental role of water motion in resource acquisition and seaweed productivity. Perspective in Phycology 4: 73–81. DOI: 10.1127/pip/2017/0072.
  • Hurd C.L. & Dring M.J. 1990. Phosphate uptake by intertidal algae in relation to zonation and season. Marine Biology 107: 281–289. DOI: 10.1007/BF01319827.
  • Hurd C.L. & Dring M.J. 1991. Desiccation and phosphate uptake by intertidal fucoid algae in relation to zonation. British Phycological Journal 26: 327–333. DOI: 10.1080/00071619100650291.
  • Hurd C.L., Harrison P.J., Bischof K. & Lobban C.S. 2014. Seaweed ecology and physiology, ed. 2. Cambridge University Press, Cambridge, UK. 551 pp.
  • Hurd C.L., Harrison P.J. & Druehl L.D. 1996. The effect of seawater flow velocity on nutrient uptake by morphologically distinct forms of Macrocystis integrifolia from sheltered and exposed sites. Marine Biology 126: 205–214. DOI: 10.1007/BF00347445.
  • Im S., Lee H.-N., Jung H.S., Yang S., Park E.-J., Hwang M.S., Jeong W.-J. & Choi D.-W. 2017. Transcriptome-based identification of the desiccation response genes in marine red algae Pyropia tenera (Rhodophyta) and enhancement of abiotic stress tolerance by PtDRG2. Chlamydomonas. Marine Biotechnology 19: 232–245. DOI: 10.1007/s10126-017-9744-x.
  • Jacox M.G., Bograd S.J., Hazen E.L. & Fiechter J. 2015. Sensitivity of the California Current nutrient supply to wind, heat, and remote ocean forcing. Geophysical Research Letters 42: 5950–5957. DOI: 10.1002/2015GL065147.
  • Kang Y.H., Hwang J.R., Chung I.Y. & Park S.R. 2013. Development of a seaweed species-selection index for successful culture in a seaweed-based integrated aquaculture system. Journal of Ocean University of China 12: 125–133. DOI: 10.1007/s11802-013-1928-z.
  • Kawamata S. 2001. Adaptive mechanical tolerance and dislodgement velocity of the kelp Laminaria japonica in wave-induced water motion. Marine Ecology Progress Series 211: 89–104. DOI: 10.3354/meps211089.
  • Kim J.K., Kraemer G.P. & Yarish C. 2009. Comparison of growth and nitrate uptake by New England Porphyra species from different tidal elevations in relation to desiccation. Phycological Research 57: 152–157. DOI: 10.1111/j.1440-1835.2009.00533.x.
  • Kim J.K., Kraemer G.P. & Yarish C. 2013. Emersion induces nitrogen release and alteration of nitrogen metabolism in the intertidal genus Porphyra. PLoS ONE 8: e69961. DOI: 10.1371/journal.pone.0069961.
  • Kleitou P., Kletou D. & David J. 2018. Is Europe ready for integrated multi-trophic aquaculture? A survey on the perspectives of European farmers and scientists with IMTA experience. Aquaculture 490: 136–148. DOI: 10.1016/j.aquaculture.2018.02.035.
  • Kraemer G.P. & Chapman D.J. 1991. Effects of tensile force and nutrient availability on carbon uptake and cell wall synthesis in blades of juvenile Egregia menziesii (Turn.) Aresch. (Phaeophyta). Journal of Experimental Marine Biology and Ecology 149: 267–277. DOI: 10.1016/0022-0981(91)90049-3.
  • Kregting L.T., Hurd C.L., Pilditch C.A. & Stevens C.L. 2008. The relative importance of water motion on nitrogen uptake by the subtidal macoalga Adamsiella chauvinii (Rhodophyta) in winter and summer. Journal of Phycology 44: 320–330. DOI: 10.1111/j.1529-8817.2008.00484.x.
  • Kübler J.E. & Dudgeon S.R. 2015. Predicting effects of ocean acidification and warming on algae lacking carbon concentrating mechanisms. PLoS ONE 10(7): e0132806. DOI: 10.1371/journal.pone.0132806.
  • Kumar M., Gupta V., Trivedi N., Kumari P., Bijo A.J., Reddy C.R.K. & Jha B. 2011. Desiccation induced oxidative stress and its biochemical responses in intertidal red alga Gracilaria corticata (Gracilariales, Rhodophyta). Environmental and Experimental Botany 72: 194–201. DOI: 10.1016/j.envexpbot.2011.03.007.
  • Lewis S.M. 1985. Herbivory on coral reefs: algal susceptibility to herbivorous fishes. Oecologia 65: 370–375. DOI: 10.1007/BF00378911.
  • Li R., Li J.J. & Wu C.Y. 1990. Effect of ammonium on growth and carrageenan content in Kappaphycus alvarezii (Gigartinales, Rhodophyta). Hydrobiologia 204: 499–503.
  • Macler B.A. 1986. Regulation of carbon flow by nitrogen and light in the red alga, Gelidium coulteri. Plant Physiology 82: 136–141. DOI: 10.1104/pp.82.1.196.
  • Madsen T.V. & Maberly S.C. 1990. A comparison of air and water as environments for photosynthesis by the intertidal alga Fucus spiralis (Phaeophyta). Journal of Phycology 26: 24–30. DOI: 10.1111/j.0022-3646.1990.00024.x.
  • Mandal S.K., Ajay G., Monisha N., Malarvizhi J., Temkar G. & Mantri V.A. 2015. Differential response of varying temperature and salinity regimes on nutrient uptake of drifting fragments of Kappaphycus alvarezii: implication on survival and growth. Journal of Applied Phycology 27: 1571–1581. DOI: 10.1007/s10811-014-0469-1.
  • Marinho G.S., Holdt S.L., Birkeland M.J. & Angelidaki I. 2015. Commercial cultivation and bioremediation potential of sugar kelp, Saccharina latissima, in Danish waters. Journal of Applied Phycology 27: 1963–1973. DOI: 10.1007/s10811-014-0519-8.
  • Matos J., Costa S., Rodrigues A., Pereira R. & Pinto I.S. 2006. Experimental integrated aquaculture of fish and red seaweeds in northern Portugal. Aquaculture 252: 31–42. DOI: 10.1016/j.aquaculture.2005.11.047.
  • Mortensen L.M. 2017. Remediation of nutrient-rich, brackish fjord water through production of protein-rich kelp S. latissima and L. digitata. Journal of Applied Phycology 28: 3089–3096. DOI: 10.1007/s10811-017-1184-5.
  • Nishihara G.N., Terrada R. & Noro T. 2005. Effect of temperature and irradiance on the uptake of ammonium and nitrate by Laurencia brongniartii (Rhodophyta, Ceramiales). Journal of Applied Phycology 17: 371–377. DOI: 10.1007/s10811-005-5519-2.
  • Oates B.R. 1985. Photosynthesis and amelioration of desiccation in the intertidal saccate alga. Colpomenia peregrina. Marine Biology 89: 109–119. DOI: 10.1007/BF00392882.
  • Pedersen M.F. 1994. Transient ammonium uptake in the macroalga Ulva lactuca (Chlorophyta) – nature, regulation, and the consequences for choice of measuring technique. Journal of Phycology 30: 980–986. DOI: 10.1111/j.0022-3646.1994.00980.x.
  • Pereira R., Kraemer G., Yarish C. & Sousa-Pinto I. 2008. Nitrogen uptake by gametophytes of Porphyra dioica (Bangiales, Rhodophyta) under controlled-culture conditions. European Journal of Phycology 43: 107–118. DOI: 10.1080/09670260701763393.
  • Pereira R. & Yarish C. 2010. The role of Porphyra in sustainable culture systems: physiology and applications. In: Seaweeds and their role in a globally changing environment (Ed. by A. Israel & R. Einav & J. Seckbach), pp. 339–354. Springer, Dordrecht, Netherlands.
  • Perini V. & Bracken M.E.S. 2014. Nitrogen availability limits phosphorus uptake in an intertidal macroalga. Oecologia 175: 667–676. DOI: 10.1007/s00442-014-2914-x.
  • Peteiro C. & Freire O. 2011. Effect of water motion on the cultivation of the commercial seaweed Undaria pinnatifida in a coastal bay of Galicia, northwest Spain. Aquaculture 314: 269–276. DOI: 10.1016/j.aquaculture.2011.02.009.
  • Phillips J.C. & Hurd C.L. 2003. Nitrogen ecophysiology of intertidal seaweeds from New Zealand: N uptake, storage and utilization in relation to shore position and season. Marine Ecology Progress Series 264: 31–48. DOI: 10.3354/meps264031.
  • Phillips J.C. & Hurd C.L. 2004. Kinetics of nitrate, ammonium, and urea uptake by four intertidal seaweeds from New Zealand. Journal of Phycology 40: 534–545. DOI: 10.1111/jpy.2004.40.issue-3.
  • Pritchard D.W., Hurd C.L., Beardall J. & Hepburn C.D. 2015. Restricted use of nitrate and a strong preference for ammonium reflects the nitrogen ecophysiology of a light-limited red alga. Journal of Phycology 51: 277–2287. DOI: 10.1111/jpy.12272.
  • Rabiei R., Phang S.M., Lim P.E., Salleh A., Sohrabipour J., Ajdari D., & Zarshenas G.A. 2016. Productivity, biochemical composition and biofiltering performance of agarophytic seaweed, gelidium elegans (red algae) grown in shrimp hatchery effluents in Malaysia. Iranian Journal Of Fisheries Sciences 15: 53–74.
  • Raven J.A., Giordano M., Beardall J. & Maberly S.C. 2011. Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynthesis Research 109: 281–296. DOI: 10.1007/s11120-011-9632-6.
  • Raven J.A., Wollenweber B. & Handley L.L. 1992. A comparison of ammonium and nitrate as nitrogen sources for photolithotrophs. New Phytologist 121: 19–32. DOI: 10.1111/nph.1992.121.issue-1.
  • Rees T.A.V. 2014. Scaling and transport kinetics in aquatic primary producers. Marine Ecology Progress Series 509: 103–112. DOI: 10.3354/meps10883.
  • Roleda M.Y., Slocombe S.P., Leakey R.J.G., Day J.G., Bell E.M. & Stanley M.S. 2013. Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresource Technology 129: 439–449. DOI: 10.1016/j.biortech.2012.11.043.
  • Schaffelke B. 1999. Short-term nutrient pulses as tools to assess responses of coral reef macroalgae to enhanced nutrient availability. Marine Ecology Progress Series 182: 305–310. DOI: 10.3354/meps182305.
  • Schaffelke B. 2001. Surface alkaline phosphatase activities of macroalgae on coral reefs of the central Great Barrier Reef, Australia. Coral Reefs 19: 310–317. DOI: 10.1007/s003380000128.
  • Smit A.J. 2002. Nitrogen uptake by Gracilaria gracilis (Rhodophyta): adaptations to a temporally variable nitrogen environment. Botanica Marina 45: 196–209. DOI: 10.1515/BOT.2002.019.
  • Smith J.M., Brzezinski M.A., Melack J.M., Miller R.J., & Reed D.C. 2018. Urea as a source of nitrogen to giant kelp (Macrocystis pyrifera). Limnology and Oceanography Letters 3: 365–373. DOI: 10.1002/lol2.10088.
  • Stévant P., Rebours C. & Chapman A. 2017. Seaweed aquaculture in Norway: recent industrial developments and future perspective. Aquaculture International 25: 1373–1390. DOI: 10.1007/s10499-017-0120-7.
  • Taylor M.W. & Rees T.A.V. 1999. Kinetics of ammonium assimilation in two seaweeds, Enteromorpha sp. (Chlorophyceae) and Osmundaria colensoi (Rhodophyceae). Journal of Phycology 35: 740–746. DOI: 10.1046/j.1529-8817.1999.3540740.x.
  • Taylor R.B., Peek J.T.A. & Rees T.A.V. 1998. Scaling of ammonium uptake by seaweeds to surface area: volumeratio: geographical variation and the role of uptake by passive diffusion. Marine Ecology Progress Series 169: 143–148. DOI: 10.3354/meps169143.
  • Taylor R.B. & Rees T.A.V. 1998. Excretory products of mobile epifauna as a nitrogen source for seaweeds. Limnology and Oceanography 43: 600–606. DOI: 10.4319/lo.1998.43.4.0600.
  • Thomas T.E., Harrison P.J. & Taylor E.B. 1985. Nitrogen uptake and growth of the germlings and mature thalli of Fucus distichus. Marine Biology 84: 267–274. DOI: 10.1007/BF00392496.
  • Thomas T.E., Harrison P.J. & Turpin D.H. 1987b. Adaptations of Gracilaria pacifica (Rhodophyta) to nitrogen procurement at different intertidal locations. Marine Biology 93: 569–580. DOI: 10.1007/BF00392795.
  • Thomas T.E., Turpin D.H. & Harrison P.J. 1987a. Desiccation enhanced nitrogen uptake rates in intertidal seaweeds. Marine Biology 94: 293–298. DOI: 10.1007/BF00392943.
  • Topinka J.A. 1978. Nitrogen uptake by Fucus spiralis (Phaeophyceae). Journal of Phycology 14: 241–247. DOI: 10.1111/jpy.1978.14.issue-3.
  • Topinka J.A. & Robbins J.V. 1976. Effects of nitrate and ammonium enrichment on growth and nitrogen physiology in Fucus Spiralis. Limnology and Oceanography 21: 659–664. DOI: 10.4319/lo.1976.21.5.0659.
  • Tseng C.K. 1981. Marine phycoculture in China. Proceedings of the International Seaweed Symposium 10: 124–152.
  • Turpin D.A. 1991. Effects of inorganic N availability on algal photosynthesis and carbon metabolism. Journal of Phycology 27: 14–20. DOI: 10.1111/j.0022-3646.1991.00014.x.
  • van der Loos L.M., Schmid M., Leal P.P., McGraw C.M., Britton D., Revill A.T., Virtue P., Nichols P.D. & Hurd C.L. 2019. Responses of macroalgae to CO2 enrichment cannot be inferred solely by their inorganic carbon uptake strategy. Ecology and Evolution 9: 125–140. DOI: 10.1002/ece3.4679.
  • Wang C., Lei A., Zhou K., Hu Z., Hao W. & Yang J. 2014. Growth and nitrogen uptake characteristics reveal outbreak mechanism of the opportunistic macroalga Gracilaria tenuistipitata. PLoS ONE 9(10): e108980. DOI: 10.1371/journal.pone.0101343.
  • Zou D. 2005. Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). Aquaculture 250: 726–735. DOI: 10.1016/j.aquaculture.2005.05.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.