5,914
Views
37
CrossRef citations to date
0
Altmetric
Reviews

Co-culture in marine farms: macroalgae can act as chemical refuge for shell-forming molluscs under an ocean acidification scenario

, &
Pages 542-551 | Received 13 Nov 2018, Accepted 04 Jun 2019, Published online: 11 Sep 2019

References

  • Abreu M.H., Varela D.A., Henríquez L.A., Villarroel A., Yarish C., Sousa-Pinto I. & Buschmann A.H. 2009. Traditional vs. integrated multi-trophic aquaculture of Gracilaria chilensis C. J. Bird, J. McLachlan & E. C. Oliveira: productivity and physiological performance. Aquaculture 293: 211–220. DOI: 10.1016/j.aquaculture.2009.03.043.
  • Airoldi L. 2003. The effects of sedimentation on rocky coast assemblages. Oceanography and Marine Biology: An Annual Review 41: 161–236.
  • Ajjabi L.C., Abaab M. & Segni R. 2018. The red macroalga Gracilaria verrucosa in co-culture with the Mediterranean mussels Mytilus galloprovincialis: productivity and nutrient removal performance. Aquaculture International 26: 253–266. DOI: 10.1007/s10499-017-0206-2.
  • Alemañ A.E., Robledo D. & Hayashi L. 2019. Development of seaweed cultivation in Latin America: current trends and future prospects. Phycologia. 58: 462–471. DOI: 10.1080/00318884.2019.1640996.
  • Alfaro A.C., Jeffs A.G. & Creese R.G. 2004. Bottom-drifting algal/mussel spat associations along a sandy coastal region in northern New Zealand. Aquaculture 241: 269–290. DOI: 10.1007/s10499-017-0206-2.
  • Avila M., Ask E., Rudolph B., Nuñez M. & Norambuena R. 1999. Economic feasibility of Sarcothalia (Gigartinales, Rhodophyta) cultivation. Hydrobiologia 398/399: 435–442. DOI: 10.1023/A:1017077827860.
  • Beer S., Björk M. & Beardall J. 2016. Photosynthesis in the marine environment. John Wiley & Sons, Iowa, USA. 244 pp.
  • Billé R., Kelly R., Biastoch A., Harrould-Kolieb E., Herr D., Joos F., Kroeker K., Laffoley D., Oschlies A. & Gattuso J.-P. 2013. Taking action against ocean acidification: a review of management and policy options. Environmental Management 52: 761–779. DOI: 10.1007/s00267-013-0132-7.
  • Brattström H. & Johanssen A. 1983. Ecological and regional zoogeography of the marine benthic fauna of Chile. Sarsia 68: 289–339. DOI: 10.1007/s00267-013-0132-7.
  • Buapet P., Gullström M. & Björk M. 2013. Photosynthetic activity of seagrasses and macroalgae in temperate shallow waters can alter seawater pH and total inorganic carbon content at the scale of a coastal embayment. Marine and Freshwater Research 64: 1040–1048. DOI: 10.1071/MF12124.
  • Buschmann A.H., Hernández-González M.C., Aranda C.P., Chopin T., Neori A., Halling C. & Troell M. 2008a. Mariculture waste management. In: Applications in ecological engineering (Ed. by S.E. Jorgensen & B.D. Fath), pp. 2211–2217. Elsevier, Oxford, UK.
  • Buschmann A.H., López D.A. & Medina A. 1996a. A review of the environmental effects and alternative production strategies of marine aquaculture in Chile. Aquaculture Engineering 15: 397–421. DOI: 10.1016/S0144-8609(96)01006-0.
  • Buschmann A.H., Retamales C.A. & Figueroa C. 1997. Ceramialean epiphytismin an intertidal Gracilaria chilensis (Rhodophyta) bed in southern Chile. Journal of Applied Phycology 9: 129–135. DOI: 10.1023/A:1007971615801.
  • Buschmann A.H., Stead R.A., Hernández-González M.C., Pereda S.V., Paredes J.E. & Maldonado M.A. 2013. Critical analysis on the use of macroalgae as a base for sustainable aquaculture. Revista Chilena De Historia Natural 86: 251–264. DOI: 10.4067/S0716-078X2013000300003.
  • Buschmann A.H., Troell M., Kautsky N. & Kautsky L. 1996b. Integrated tank cultivation of salmonids and Gracilaria chilensis (Gracilariales, Rhodophyta). Hydrobiologia 326: 75–82. DOI: 10.1007/BF00047789.
  • Buschmann A.H., Varela D.A., Hernández-González M.C. & Huovinen P. 2008b. Opportunities and challenges for the development of an integrated seaweed-based aquaculture activity in Chile: determining the physiological capabilities of Macrocystis and Gracilaria as biofilters. Journal of Applied Phycology 20: 571–577. DOI: 10.1007/978-1-4020-9619-8_17.
  • Cai W.J., Hu X., Huang W.J., Murrell M.C., Lehrter J.C., Lohrenz S.E., Chou W.C., Zhai W., Hollibaugh J.T., Wang Y. et al. 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience 4: 766–770. DOI: 10.1038/ngeo1297.
  • Caldeira K. & Wickett M.E. 2003. Anthropogenic carbon and ocean pH. Nature 425: 365. DOI: 10.1038/425365a.
  • Camus C., Infante J. & Buschmann A.H. 2019. Revisiting the economic profitability of giant kelp Macrocystis pyrifera (Ochrophyta) cultivation in Chile. Aquaculture 502: 80–86. DOI: 10.1016/j.aquaculture.2018.12.030.
  • Castillo M. & Valenzuela C. 2008. Circulation regime in the austral Chilean channels and fjords. In: Progress in the oceanographic knowledge of Chilean interior waters, from Puerto Montt to Cape Horn (Ed. by N. Silva & S. Palma), pp. 59–62. Comité Oceanográfico Nacional, Pontificia Univ. Católica de Valparaiso, Chile.
  • Chen B., Zou D., Ma Z., Yu P. & Wu M. 2019. Effects of light intensity on the photosynthetic responses of Sargassum fusiforme seedlings to future CO2 rising. Aquaculture Research 50: 116–125. DOI: 10.1111/are.2019.50.issue-1.
  • Chopin T., Cooper J.A., Reid G., Cross S. & Moore C. 2012. Open-water integrated multi-trophic aquaculture: environmental biomitigation and economic diversification of feed aquaculture by extractive aquaculture. Reviews in Aquaculture 4: 209–220. DOI: 10.1111/j.1753-5131.2012.01074.x.
  • Chopin T., Robinson S.M.C., Troell M., Neori A., Buschmann A.H. & Fang J. 2008. Multitrophic integration for sustainable marine aquaculture. In: Ecological engineering, vol. 3 (Ed. by S.E. Jørgensen & B.D. Fath), pp. 2463–2475. Elsevier, Oxford, UK.
  • Chung I.K., Oak J.H., Lee J.A., Shin J.A., Kim J.G. & Park K.S. 2013. Installing kelp forests/seaweed beds for mitigation and adaptation against global warming: Korean project overview. ICES Journal of Marine Science 70: 1038–1044. DOI: 10.1093/icesjms/fss206.
  • Coen L.D., Brumbaugh R.D., Bushek D., Grizzle R., Luckenbach M.W., Posey M.H., Powers S.P. & Tolley S.G. 2007. Ecosystem services related to oyster restoration. Marine Ecology Progress Series 341: 303–307. DOI: 10.3354/meps341303.
  • Comeau S. & Cornwall C.E. 2017. Contrasting effects of ocean acidification on coral reef “animal forests” versus seaweed “kelp forests.”. In: Marine animal forests, the ecology of benthic biodiversity hotspots (Ed. by S. Rossi, L. Bramanti, A. Gori & C. Orejas), pp. 1–43. Springer International Publishing, Cham, Switzerland.
  • Cornwall C.E., Boyd P.W., McGraw C.M., Hepburn C.D., Pilditch C.A., Morris J.N., Smith A.M. & Hurd C.L. 2014. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS ONE 9: e97235. DOI: 10.1371/journal.pone.0097235.
  • Cornwall C.E., Hepburn C.D., McGraw C.M., Currie K.I., Pilditch C.A., Hunter K.A., Boyd P.W. & Hurd C.L. 2013. Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proceedings of the Royal Society B 280: 20132201. DOI: 10.1098/rspb.2013.2201.
  • Cornwall C.E., Revill A.T., Hall-Spencer J.M., Milazzo M., Raven J.A. & Hurd C.L. 2017. Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Scientific Reports 7: 46297. DOI: 10.1038/srep46297.
  • Cornwall C.E., Revill A.T. & Hurd C.L. 2015. High prevalence of diffusive uptake of CO2 by macroalgae in a temperate subtidal ecosystem. Photosynthesis Research 124: 181–190. DOI: 10.1007/s11120-015-0114-0.
  • Costa-Pierce B.A. 2016. Ocean foods ecosystems for planetary survival in the anthropocene. World Nutrition Forum 2016: 301–320.
  • Dayton P.K. 1985. Ecology of kelp communities. Annual Review of Ecology, Evolution, and Systematics 16: 215–245. DOI: 10.1146/annurev.es.16.110185.001243.
  • Doney S.C., Fabry V.J., Feely R.A. & Kleypas J.A. 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1: 169–192. DOI: 10.1146/annurev.marine.010908.163834.
  • Duarte C., Navarro J.M., Acuña K., Torres R., Manríquez P.H., Lardies M.A., Vargas C.A., Lagos N.A. & Aguilera V. 2014. Combined effects of temperature and ocean acidification on the juvenile individuals of the mussel Mytilus chilensis. Journal of Sea Research 85: 308–314. DOI: 10.1016/j.seares.2013.06.002.
  • Duarte C., Navarro J.M., Acuña K., Torres R., Manríquez P.H., Lardies M.A., Vargas C.A., Lagos N.A. & Aguilera V. 2015. Intraspecific variability in the response of the edible mussel Mytilus chilensis (Hupe) to ocean acidification. Estuaries and Coasts 38: 590–598. DOI: 10.1007/s12237-014-9845-y.
  • Duarte C.M., Hendriks I.E. Moore T.S., Olsen Y.S., Steckbauer A., Ramajo L., Carstensen J., Trotter J.A. & McCulloch M. 2013. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries and Coasts 36: 221–236. DOI: 10.1007/s12237-013-9594-3.
  • Duarte C.M., Wu J., Xiao X., Bruhn A. & Krause-Jensen D. 2017. Can seaweed farming play a role in climate change mitigation and adaptation? Frontiers in Marine Science 4: 100. DOI: 10.3389/fmars.2017.00100.
  • Dumbauld B.R., Ruesink J.L. & Rumrill S.S. 2009. The ecological role of bivalve shellfish aquaculture in the estuarine environment: a review with application to oyster and clam culture in west coast (USA) estuaries. Aquaculture 290: 196–223. DOI: 10.1016/j.aquaculture.2009.02.033.
  • Enochs I.C., Manzello D.P., Jones P.J., Aguilar C., Cohen K., Valentino L., Schopmeyer S., Lolodziej G., Jankulak M. & Lirman D. 2018. The influence of diel carbonate chemistry fluctuations on the calcification rate of Acropora cervicornis under present day and future acidification conditions. Journal of Experimental Marine Biology and Ecology 506: 135–143. DOI: 10.1016/j.jembe.2018.06.007.
  • Fang J., Zhang J., Xiao T., Huang D. & Liu S. 2016. Integrated multi-trophic aquaculture (IMTA) in Sanggou Bay, China. Aquaculture Environment Interactions 8: 201–205. DOI: 10.3354/aei00179.
  • Fernández P.A., Hurd C.L. & Roleda M.Y. 2014. Bicarbonate uptake via anion exchange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH. Journal of Phycology 50: 998–1008. DOI: 10.1111/jpy.12247.
  • Ferriss B.E., Reum J.C.P., McDonald P.S., Farrell D.M. & Harvey C.J. 2016. Evaluating trophic and non-trophic effects of shellfish aquaculture in a coastal estuarine foodweb. ICES Journal of Marine Science 73: 429–440. DOI: 10.1093/icesjms/fsv173.
  • Food and Agriculture Organization. 2016. The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. FAO, Rome, Italy. 200 pp.
  • Forsyth R.G., Oldham M.J. & Schueler F.W. 2008. Mollusca, Gastropoda, Ellobiidae, Carychium minimum, and Ferussaciidae, Cecilioides acicula: distribution extension and first provincial records of two introduced land snails in Ontario, Canada. Check List 4: 449–452. DOI: 10.15560/4.4.449.
  • Frieder C.A., Gonzalez J.P., Bockmon E.E., Navarro M.O. & Levin L.A. 2014. Can variable pH and low oxygen moderate ocean acidification outcomes for mussel larvae? Global Change Biology 20: 754–764. DOI: 10.1111/gcb.12485.
  • Gazeau F., Parker L.M., Comeau S., Gattuso J.-P., O’Connor W.A., Martin S., Pörtner H.O. & Ross P.M. 2013. Impacts of ocean acidification on marine shelled molluscs. Marine Biology 160: 2207–2245. DOI: 10.1007/s00227-013-2219-3.
  • Granada L., Sousa N., Lopes S. & Lemos M.F.L. 2016. Is integrated multitrophic aquaculture the solution to the sectors’ major challenges? – a review. Reviews in Aquaculture 6: 1–18. DOI: 10.1111/raq.12093.
  • Green M.A., Waldbusser G.G., Hubazc L., Cathcart E. & Hall J. 2013. Carbonate mineral saturation state as the recruitment cue for settling bivalves in marine muds. Estuaries and Coasts 36: 18–27. DOI: 10.1007/s12237-012-9549-0.
  • Greiner C.M., Klinger T., Ruesink J.L., Barber J.S. & Horwith M. 2018. Habitat effects of macrophytes and shell on carbonate chemistry and juvenile clam recruitment, survival, and growth. Journal of Experimental Marine Biology and Ecology 509: 8–15. DOI: 10.1016/j.jembe.2018.08.006.
  • Groner M.L., Burge C.A., Cox R., Rivlin N.D., Turner M., Van Alstyne K.L., Wyllie-Echeverria S., Bucci J., Staudigel P. & Friedman C.S. 2018. Oysters and eelgrass: potential partners in a high pCO2 ocean. Ecology 99: 1802–1814. DOI: 10.6084/m9.figshare.6182522.
  • Gurgel C.F.D., Norris J.N., Schmidt W.E., Le H.N. & Fredericq S. 2018. Systematics of the Gracilariales (Rhodophyta) including new subfamilies, tribes, subgenera, and two new genera, Agarophyton gen. nov. and Crassa gen. nov. Phytotaxa 374: 1–23. DOI: 10.11646/phytotaxa.374.1.1.
  • Han T., Shi R., Qi Z., Huang H., Liang Q. & Liu H. 2017. Interactive effects of oyster and seaweed on seawater dissolved inorganic carbon systems: implications for integrated multi-trophic aquaculture. Aquaculture Environment Interactions 9: 469–478. DOI: 10.3354/aei00246.
  • Harley C.D.G., Anderson K.M., Demes K.W., Jorve J.P., Kordas R.L., Coyle T.A. & Graham M.H. 2012. Effects of climate change on global seaweed communities. Journal of Phycology 48: 1064–1078. DOI: 10.1111/j.1529-8817.2012.01224.x.
  • Harrington L., Fabricius K., Eaglesham G. & Negri A. 2005. Synergistic effects of diuron and sedimentation on photosynthesis and survival of crustose coralline algae. Marine Pollution Bulletin 51: 415–527. DOI: 10.1016/j.marpolbul.2004.10.042.
  • Harrison P.J. & Hurd C.L. 2001. Nutrient physiology of seaweeds: application of concepts to aquaculture. Cahiers De Biologie Marine 42: 71–82.
  • Harvey B., Soto D., Carolsfeld J., Beveridge M.C.M. & Bartley D.M. 2017. Planning for aquaculture diversification: the importance of climate change and other drivers. FAO Fisheries and Aquaculture Proceedings No. 47, Rome, Italy. 166 pp.
  • Häussermann V. & Försterra G. [Eds] 2009. Marine benthic fauna of Chilean Patagonia. World Color Chile, Santiago, Chile. 1000 pp.
  • Hendriks I.E., Duarte C.M., Olsen Y.S., Steckbauer A., Ramajo L., Moore T.S., Trotter J.A. & MacCulloch M. 2015. Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems. Estuarine, Coastal and Shelf Science 152: A1–A8. DOI: 10.1016/j.ecss.2014.07.019.
  • Hendriks I.E. Olsen Y.S., Ramajo L., Basso L., Steckbauer A., Moore T.S., Howard J. & Duarte C.M. 2014. Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11: 333–346. DOI: 10.5194/bg-11-333-2014.
  • Hepburn C.D., Pritchard D.W., Cornwall C.E., McLeod R.J., Beardall J., Raven J.A. & Hurd C.L. 2011. Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Global Change Biology 17: 2488–2497. DOI: 10.1111/j.1365-2486.2011.02411.x.
  • Hoffmann A.J. & Santelices B. 1997. Flora marina de Chile central. Ediciones Universidad Catolica de Chile, Santiago, Chile. 434 pp.
  • Hofmann G.E., Smith J.E., Johnson K.S., Send U., Levin L.A., Micheli F., Paytan A., Price N.N., Peterson B., Takeshita Y. et al. 2011. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6: e28983. DOI: 10.1371/journal.pone.0028983.
  • Huo Y., Wu H., Chai Z., Xu S., Han F., Dong L. & He P. 2012. Bioremediation efficiency of Gracilaria verrucosa for an integrated multi-trophic aquaculture system with Pseudosciaena crocea in Xiangshan Harbor, China. Aquaculture 326-329: 99–105. DOI: 10.1016/j.aquaculture.2011.11.002.
  • Hurd C.L. 2000. Water motion, marine macroalgal physiology, and production. Journal of Phycology 36: 453–472. DOI: 10.1046/j.1529-8817.2000.99139.x.
  • Hurd C.L. 2015. Slow-flow habitats as refugia for coastal calcifiers from ocean acidification. Journal of Phycology 51: 599–605. DOI: 10.1111/jpy.12307.
  • Hurd C.L., Harrison P.J., Bischof K. & Lobban C.S. 2014. Seaweed ecology and physiology, ed. 2. Cambridge University Press, Cambridge, UK. 562 pp.
  • Instituto de Fomento Pesquero. 2019. CHONOS. http://chonos.ifop.cl/.
  • Intergovernmental Panel on Climate Change. 2013. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK. 1535 pp.
  • Jeffs A.G., Delorme N.J., Stanley J., Zamora L.N. & Sim-Smith C. 2018. Composition of beachcast material containing green-lipped mussel (Perna canaliculus) seed harvested for aquaculture in New Zealand. Aquaculture 488: 30–38. DOI: 10.1016/j.aquaculture.2018.01.024.
  • Jiang Z., Li J., Qiao X., Wang G., Bian D., Jiang X., Liu Y., Huang D., Wang W. & Fang J. 2015. The budget of dissolved inorganic carbon in the shellfish and seaweed integrated mariculture area of Sanggou Bay, Shandong, China. Aquaculture 446: 167–174. DOI: 10.1016/j.aquaculture.2014.12.043.
  • Keeley N.B., Forrest B., Hopkins G., Gillespie P., Knight B., Webb S., Clement D. & Gardner J. 2009. Sustainable aquaculture in New Zealand: review of the ecological effects of farming shellfish and other non-finfish species. Prepared for the Ministry of Fisheries. Cawthron Report No. 1476, Nelson, New Zealand. 174 pp.
  • Koch M., Bowes G., Ross C. & Zhang X.H. 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biology 19: 103–132. DOI: 10.1111/j.1365-2486.2012.02791.x.
  • Kotta J., Herkül K., Kotta I., Orav-Kotta H. & Lauringson V. 2009. Effects of the suspension feeding mussel Mytilus trossulus on a brackish water macroalgal and associated invertebrate community. Marine Ecology 30: 56–64. DOI: 10.1111/j.1439-0485.2009.00303.x.
  • Krause-Jensen D., Marbà N., Sanz-Martin M., Hendriks I.E. Thyrring J., Carstensen J., Sejr M.K. & Duarte C.M. 2016. Long photoperiods sustain high pH in Arctic kelp forests. Science Advances 2: e1501938. DOI: 10.1126/sciadv.1501938.
  • Kroeker K.J., Kordas R.L., Crim R.N., Hendriks I.E. Ramajo L., Singh G.S., Duarte C.M. & Gattuso J.-P. 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology 19: 1884–1896. DOI: 10.1111/gcb.12179.
  • Krumhansl K.A., Okamoto D.K., Rassweiler A., Novak M., Bolton J.J., Cavanaugh K.C., Connell S.D., Johnson C.R., Konar B., Ling S.D. et al. 2016. Global patterns of kelp forest change over the past half-century. Proceedings of the National Academy of Sciences of the United States of America 113: 1385–1390. DOI: 10.1073/pnas.1606102113.
  • Kurihara H. 2008. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series 373: 275–284. DOI: 10.3354/meps07802.
  • Ladner I., Su I., Wolfe S. & Oliver S. 2018. Economic feasibility of seaweed aquaculture in southern California. Masters thesis. University of California, Santa Barbara, USA. 88 pp.
  • Laffoley D. & Grimsditch G. 2009. The management of natural coastal carbon sinks. IUCN, Gland, Switzerland. 53 pp.
  • Leal P.P., Hurd C.L., Sander S.G., Armstrong E., Fernández P.A., Suhrhoff T.J. & Roleda M.Y. 2018. Copper pollution exacerbates the effects of ocean acidification and warming on kelp microscopic early life stages. Scientific Reports 8: 14763. DOI: 10.1038/s41598-018-32899-w.
  • Lüning K. & Pang S. 2003. Mass cultivation of seaweeds: current aspects and approaches. Journal of Applied Phycology 15: 115–119. DOI: 10.1023/A:1023807503255.
  • Maberly S.C., Raven J.A. & Johnston A.M. 1992. Discrimination between 12C and 13C by marine plants. Oecologia 91: 481–492. DOI: 10.1007/BF00650320.
  • Madsen J.D., Chambers P.A., James W.F., Koch E.W. & Westlake D.F. 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84. DOI: 10.1023/A:1017520800568.
  • Mao Y., Yang H., Zhou Y., Ye N. & Fang J. 2009. Potential of the seaweed Gracilaria lemaneiformis for integrated multi-trophic aquaculture with scallop Chlamys farreri in North China. Journal of Applied Phycology 21: 649–656. DOI: 10.1007/s10811-008-9398-1.
  • Marin F., Corstjens P., De Gaulejac B., de Vrind-De Jong E. & Westbroek P. 2000. Mucins and molluscan calcification. Molecular characterization of mucoperlin, a novel mucin-like protein from the nacreous shell layer of the fan mussel Pinna nobilis (Bivalvia, Pteriomorphia). Journal of Biological Chemistry 275: 20667–20675. DOI:https://0.1074/jbc.M003006200.
  • Martin S., Rodolfo-Metalpa R., Ransome E., Rowley S., Buia M.C. & Gattuso J.-P. 2008. Effects of naturally acidified seawater on seagrass calcareous epibionts. Biological Letters 4: 689–692. DOI: 10.1098/rsbl.2008.0412.
  • McCulloch M.T., Falter J., Trotter J.A. & Montagna P. 2012. Coral resilience to ocean acidification and global warming through pH up-regulation. Nature Climate Change 2: 623–627. DOI: 10.1038/NCLIMATE1473.
  • Méléder V., Populus J., Guillaumont B., Perrot T. & Mouquet P. 2010. Predictive modelling of seabed habitats: case study of subtidal kelp forests on the coast of Brittany, France. Marine Biology 157: 1525–1541. DOI: 10.1007/s00227-010-1426-4.
  • Mišurcová L. 2012. Chemical composition of seaweeds. In: Handbook of marine macroalgae: biotechnology and applied phycology (Ed. by S.-K. Kim), pp. 175–192. John Wiley & Sons Ltd., Chichester, UK.
  • Müller R., Laepple T., Bartsch I. & Wiencke C. 2009. Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. Botanica Marina 52: 617–638. DOI: 10.1515/BOT.2009.080.
  • Navarro J.M., Duarte C., Manríquez P.H., Lardies M.A., Torres R., Acuña K., Vargas C.A. & Lagos N.A. 2016. Ocean warming and elevated carbon dioxide: multiple stressor impacts on juvenile mussels from southern Chile. ICES Journal of Marine Science 73: 764–771. DOI: 10.1093/icesjms/fsv249.
  • Navarro J.M., Torres R., Acuña K., Duarte C. & Manriquez P.H. 2013. Impact of medium-term exposure to elevated pCO2 levels on the physiological energetics of the mussel Mytilus chilensis. Chemosphere 90: 1242–1248. DOI: 10.1016/j.chemosphere.2012.09.063.
  • Newell R.I.E. 2007. A framework for developing “ecological carrying capacity” mathematical models for bivalve mollusc aquaculture. Bulletin of Fisheries Research Agency 19: 41–51.
  • Onitsuka T., Takami H., Muraoka D., Matsumoto Y., Nakatsubo A., Kimura R., Ono T. & Nojiri Y. 2018. Effects of ocean acidification with pCO2 diurnal fluctuations on survival and larval shell formation of Ezo abalone, Haliotis discus hannai. Marine Environmental Research 134: 28–36. DOI: 10.1016/j.marenvres.2017.12.015.
  • Pantoja S., Iriarte J.L. & Daneri G. 2011. Oceanography of the Chilean Patagonia. Continental Shelf Research 31: 149–153. DOI: 10.1016/j.csr.2010.10.013.
  • Peterson C.H., Summerson H.C. & Duncan P.B. 1984. The influence of seagrass cover on population structure and individual growth rate of a suspension-feeding bivalve, Mercenaria mercenaria. Journal of Marine Research 42: 123–138. DOI: 10.1357/002224084788506194.
  • Pettit L.R., Smart C.W., Hart M.B., Milazzo M. & Hall-Spencer J.M. 2015. Seaweed fails to prevent ocean acidification impact on foraminifera along a shallow-water CO2 gradient. Ecology and Evolution 5: 1784–1793. DOI: 10.1002/ece3.1475.
  • Przeslawski R., Byrne M. & Mellin C. 2015. A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Global Change Biology 21: 2122–2140. DOI: 10.1111/gcb.12833.
  • Raven J.A., Giordano M., Beardall J. & Maberly S.C. 2012. Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philosophical Transactions of the Royal Society B 367: 493–507. DOI: 10.1098/rstb.2011.0212.
  • Resplandy L., Keeling R.F., Eddebbar Y., Brooks M.K., Wang R., Bopp L., Long M.C., Dunne J.P., Koeve W. & Oschlies A. 2018. Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition. Nature 563: 105–108. DOI: 10.1038/s41586-018-0651-8.
  • Ridler N., Wowchuk M., Robinson B., Barrington K., Chopin T., & Robinson S. etal. 2007. Integrated multi-trophic aquaculture (imta): A potential strategic choice for farmers. Aquaculture Economics & Management 11: 99–110.
  • Roleda M.Y., Boyd P.W. & Hurd C.L. 2012. Before ocean acidification: calcifier chemistry lessons. Journal of Phycology 48: 840–843. DOI: 10.1111/j.1529-8817.2012.01195.x.
  • Roleda M.Y. & Hurd C.L. 2019. Seaweed nutrient physiology: application of concepts to aquaculture and bioremediation. Phycologia 58: 552–562. DOI: 10.1080/00318884.2019.1622920.
  • Romo H., Alveal K. & Werlinger C. 2001. Growth of the commercial carragenophyte Sarcothalia crispata (Rhodophyta, Gigartinales) on suspended culture in central Chile. Journal of Applied Phycology 13: 229–234. DOI: 10.1023/A:1011173515578.
  • Romo H., Avila M., Núñez M., Pérez R., Candia A. & Aroca G. 2006. Culture of Gigartina skottsbergii (Rhodophyta) in southern Chile. A pilot scale approach. Journal of Applied Phycology 18: 307–314. DOI: 10.1007/s10811-006-9026-x.
  • Saderne V., Fietzek P., Aßmann S., Körtzinger A. & Hiebenthal C. 2015. Seagrass beds as ocean acidification refuges for mussels? High resolution measurements of pCO2 and O2 in a Zostera marina and Mytilus edulis mosaic habitat. Biogeosciences Discuss 12: 11423–11461. DOI: 10.5194/bgd-12-11423-2015.
  • SeafoodSource. 2019. SeafoodSource. https://www.seafoodsource.com/; searched on 20 September 2001.
  • Semesi I.S., Beer S. & Björk M. 2009. Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow. Marine Ecology Progress Series 382: 41–47. DOI: 10.3354/meps07973.
  • Servicio Nacional de Pesca y Acuicultura. 2018. Anuarios estadísticos de pesca. http://www.sernapesca.cl/?option=com_remository&Itemid=246&func=select&id=334; searched on 04 October 2018.
  • Silva N. & Vargas C.A. 2014. Hypoxia in Chilean Patagonian fjords. Progress in Oceanography 129: 62–74. DOI: 10.1016/j.pocean.2014.05.016.
  • Tang Q., Zhang J. & Fang J. 2011. Shellfish and seaweed mariculture increase atmospheric CO2 absorption by coastal ecosystems. Marine Ecology Progress Series 424: 97–104. DOI: 10.3354/meps08979.
  • Torres R., Pantoja S., Harada N., Gonzalez H.E., Daneri G., Frangopulos M., Rutllant J., Duarte C.M., Rúiz-Halpern S., Mayol E. et al. 2011. Air-sea CO2 fluxes along the coast of Chile: from CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords. Journal of Geophysical Research: Oceans 116: C09006. DOI: 10.1029/2010JC006344.
  • Troell M. 2009. Integrated marine and brackishwater aquaculture in tropical regions: research, implementation and prospects. In: Integrated mariculture: a global review (Ed. by D. Soto) FAO Fisheries and Aquaculture Technical Paper. No. 529, pp. 47–131. FAO, Rome, Italy.
  • Troell M., Joyce A., Chopin T., Neori A., Buschmann A.H. & Fang J.-G. 2009. Ecological engineering in aquaculture — potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297: 1–9. DOI: 10.1016/j.aquaculture.2009.09.010.
  • Troell M., Naylor R.L., Metian M., Beveridge M.C.M., Tyedmers P.H., Folke C., Arrow K.J., Barrett S., Crépin A.-S., Ehrlich P.R., et al. 2014. Does aquaculture add resilience to the global food system? Proceedings of the National Academy of Sciences of the United States of America 111: 13257–13263. DOI: 10.1073/pnas.1404067111.
  • Turan G. & Neori A. 2010. Intensive seaweed aquaculture: a potent solution against global warming. In: Seaweeds and their role in globally changing environments (Ed. by A. Israel, R. Einav & J. Seckbach), pp. 359–372. Springer, London, UK.
  • Unsworth R.K.F., Collier C.J., Henderson G.M. & McKenzie L.J. 2012. Tropical seagrass meadows modify seawater carbon chemistry: implications for coral reefs impacted by ocean acidification. Environmental Research Letters 7: 24026. DOI: 10.1088/1748-9326/7/2/024026.
  • Valle-Levinson A., Sarkar N., Sanay R., Soto D. & León-Muñoz J. 2007. Spatial structure of hydrography and flow in a Chilean fjord, Estuario Reloncaví. Estuaries and Coasts 30: 113–126. DOI: 10.1007/BF02782972.
  • Varela D.A., Henríquez L.A., Fernández P.A., Leal P.P., Hernández-González M.C., Figueroa F.L. & Buschmann A.H. 2018. Photosynthesis and nitrogen uptake of the giant kelp Macrocystis pyrifera (Ochrophyta) grown close to salmon farms. Marine Environmental Research 135: 93–102. DOI: 10.1016/j.marenvres.2018.02.002.
  • Vargas C.A., Contreras P.Y., Pérez C.A., Sobarzo M., Saldías G.S. & Salisbury J.E. 2016. Influences of riverine and upwelling waters on the coastal carbonate system off Central Chile, and their ocean acidification implications. Journal of Geophysical Research: Biogeosciences 121: 1468–1483. DOI: 10.1002/2015JG003213.
  • Waldbusser G.G., Hales B., Langdon C.J., Haley B.A., Schrader P., Brunner E.L., Gray M.W., Miller C.A., Gimenez I. & Hutchinson G. 2015. Ocean acidification has multiple modes of action on bivalve larvae. PLoS ONE 10: e01283. DOI: 10.1371/journal.pone.0128376.
  • Waldbusser G.G. & Salisbury J.E. 2014. Ocean acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and habitats. Annual Review of Marine Science 6: 221–247. DOI: 10.1146/annurev-marine-121211-172238.
  • Westermeier R., Gómez I. & Rivera P. 1993. Suspended farming of Gracilaria chilensis (Rhodophyta, Gigartinales) at Cariquilda River, Maullín, Chile. Aquaculture 113: 215–229. DOI: 10.1016/0044-8486(93)90475-E.
  • Westermeier R., Patiño D.J., Murúa P., Quintanilla J.C., Correa J., Buschmann A.H. & Barros I. 2012. A pilot-scale study of the vegetative propagation and suspended cultivation of the carrageenophyte alga Gigartina skottsbergii in southern Chile. Journal of Applied Phycology 24: 11–20. DOI: 10.1007/s10811-010-9640-5.
  • Wiedemeyer W.L. & Schwamborn R. 1996. Detritus derived from eelgrass and macroalgae as potential carbon source for Mytilus edulis in Kiel Fjord, Germany: a preliminary carbon isotopic study. Helgoländer Meeresuntersuchungen 50: 409–413. DOI: 10.1007/BF02367112.
  • Willett W., Rockström J., Loken B., Springmann M., Lang T., Vermeulen S., Garnett T., Tilman D., DeClerck F., Wood A. et al. 2019. Food in the Anthropocene: the EAT–lancet Commission on healthy diets from sustainable food systems. Lancet Communications 393: 447–492. DOI: 10.1016/S0140-6736(18)31788-4.
  • Xiao X., Agusti S., Lin F., Li K., Pan Y., Yu Y., Zheng Y., Wu J. & Duarte C.M. 2017. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture. Scientific Reports 7: 46613. DOI: 10.1038/srep46613.
  • Xu Q., Gao F. & Yang H. 2016. Importance of kelp-derived organic carbon to the scallop Chlamys farreri in an integrated multi-trophic aquaculture system. Chinese Journal of Oceanology and Limnology 34: 322–329. DOI: 10.1007/s00343-015-4332-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.